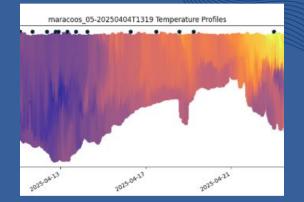


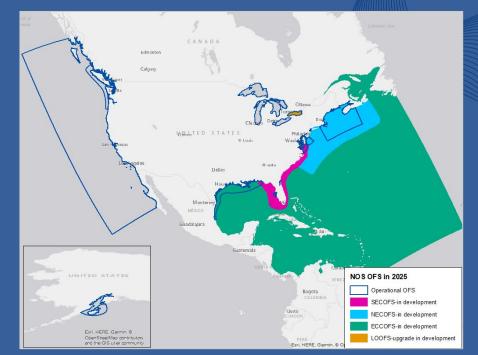

Center for Operational Oceanographic Products and Services NATIONAL OCEAN SERVICE

Observations in National Ocean Service Operational Modeling

Lucila Houttuijn Bloemendaal


Presentation Outline

Overview: Operational Forecast Systems (OFS)


Observations in OFS

Observations for Model Evaluation

National Operational Coastal Modeling Program

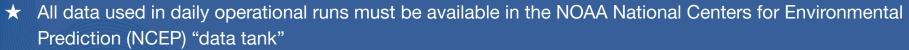
- → Established within the National Ocean Service (NOS) in 2003, with the goal to:
 - Provide high resolution short-term forecast guidance out to 2-5 days
 - Include key oceanographic parameters such as 2D water levels, 3D currents, water temperature and salinity
 - Provide coverage for high priority ports and approaches
 - Ensure safe and efficient navigation to head of tide
 - Support emergency response and ecological forecasting
- Aiming to complete CONUS coverage and priority ports in OCONUS and U.S. Territories

Uparenthgpatiatlatoceregage follOSS parentiation affore cases systemes

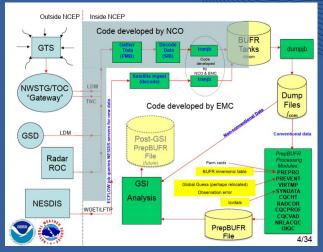
NOS Operational Forecast Systems: Requirements

Core ocean model: open sourced community-based system

- FVCOM and ROMS are currently selected as core hydrodynamic models.
- SCHISM will be integrated in the future
- → Capabilities:
 - Nearshore high resolution
 - Incorporating data assimilation approaches
- → Coverage and resolution:
 - Grid should extend upstream to head of tide and navigation channel
 - Highly resolve navigational channels (\leq 100m) to meet pilots' needs
- → Model skill:
 - Meet NOS standards for model performance and stability


➔ Operations:

- On NOAA's supercomputing system (WCOSS)
- Data used by models must be available on this system


Observations for NOS Operational Forecast Systems

Realtime data used as OFS inputs or for data assimilation

- → Physical oceanographic observations of NWLON/PORTS
- → Buoy observations from NDBC
- → River flow and water temperature observations from USGS and Canada
- → Satellite SST and SSH
- → HF radar currents
- → ADCP current observations
- → CTD observations

 Observational data at NCEP is in BUFR format (Binary Universal Form for the Representation of meteorological data)

Schematic of NCEP data tank data flow

Observations for Model Skill Assessment

Current evaluation of NOS Operational Forecast Systems:

- → Fortran-based skill assessment package
- → Reads observation time series (1D)
 - Water level, currents, temperature, salinity
 - Select coastal and ocean stations (e.g., CO-OPS and USGS stations)

Observations for Model Skill Assessment

Next gen evaluation capabilities:

- → Python-based skill assessment package and web-based GIS application for routine NOS OFS verification
- → Updated 1D skill assessment: Realtime observations from CO-OPS, USGS, and NDBC stations for water level, currents velocity and direction, temperature, and salinity
- → Ice validation: Skill assessment of ice concentration and extent using National Ice Center and Great Lakes Surface Environmental Analysis products
- → Adding 2D skill assessment: remote sensing observations and products over entire OFS domain

Adding 3D skill assessment: CTD and ADCP profiles, gliders, AUVs
Opportunity for using OOI data

Center for Operational Oceanographic Products and Services NATIONAL OCEAN SERVICE

Questions?

