

OCEAN OBSERVATORIES INITIATIVE

Regional Cabled Array Update

The second and the second second

Deb Kelley & RCA Team **OOIFB Spring 2025**

RCA Maintenance Cruise AT50-41 (VISIONS'25) July 31 - September 1, 2025

- 32 OOI-RCA days, RV Atlantis and Jason turn >100 instruments, 5 junction boxes, 2 BEPs, Axial Base Deep Profiler Vehicls, 4 PI days: 1 B. Chadwick (OSU), G. Xu, D. Soule, K. Bemis 3 days
- Workforce development: NSF Postdoc Katie Bigham Chief Sci Leg 1, 13 VISIONS students, 1 graduate student
- Leg 2 sails August 16: Complex logistics Jason will 0 unplug Oregon Offshore and Slope Base Deep Profiler Moorings Leg 2 & buoy off with surface float

 - Depart August 18, will turn Offshore and Slope Base **Deep Profiler Moorings**
- Jason will return and plug them in. \odot

Deep Profiler Turn Sally Ride

RCA Increasing Operational Success Over a Decade

Nereus E<

NEREUS provides decade-long tracking of infrastructure history, issue tracking & resolution, and live reporting **APL: K. Rosburg**

Operational Status Overview

May 2 Friday 20:47 итс 🔱

RCA Increasing Operational Success: Shallow Profilers

Nereus Ξ<

From 2015, three shallow profilers have made >50,000 profiles hosting up to 18 instruments

Platform Interface (PIA) Stationary 200m

pН

Broadband hydrophone Fluorometer CTD-dissolved oxygen 5-beam ADCP 150 kHz ADCP 80 kHz Zooplankton Sonar* PAR Digital Still Camera *Oregon Offshore

Winched Science Pod (SC0) Profiles 9 times/day 200-5m

pН

pCO₂

3W Fluorometer

CTD-dissolved oxygen

Nitrate

Spectral irradiance

Current meter + Temp

Operational Status Overview

Slope Base [SC01A]- 750 km Oregon Offshore [SC01B]- 825 km Axial Base [SC03A]- 675 km*

• ••• SF01B	😲 Operational	Enabled			🛃 Good	
60 ··· CE040SPS-SF01B-2A-CTDPFA107	(Operational	Enabled	I Good	(B) Good	🖾 Good	8
00 ··· CE040SPS-SF01B-2A-D0FSTA107	Uperational	🔔 Enabled	Good Good	(B) Good	🛃 Good	C
0.0 ··· CE040SPS-SF01B-2B-PHSENA108	Failed	Silenced	Unmonitored	🕒 Unmonitored	🔼 Unmonitored	Ø
60 CE040SPS-SF01B-3A-FLORTD104	(Uperational)	🔔 Enabled	Good	🖹 Good	🔼 Good	C
00 ···· CE040SPS-SF01B-3B-OPTAAD105	(Operational	🔔 Enabled	Good	Good	🖾 Good	
69 CE040SPS-SF01B-3C-PARADA102	Uperational	Enabled	Good Good	🕒 Good	🔁 Good	
(a) CE040SPS-SF01B-3D-SPKIRA102	🔮 Operational	Enabled	🗐 Good	🕒 Good	🔼 Good	0
🕬 CE040SPS-SF01B-4A-NUTNRA102	(Operational)	Enabled	G Good	🔒 Good	🖾 Good	0
00 ···· CE040SPS-SF01B-4B-VELPTD106	(Uperational)	(Enabled	Good Good	(B) Good	🖾 Good	0
60 ··· CE040SPS-SF01B-4F-PC02WA102	1 Failed	Silenced	I Unmonitored	🕒 Unmonitored	🔼 Unmonitored	C

RCA Increasing Operational Success: Deep Profilers

Nereus K

Operational Status Overview

Deep Profiler (12 times/day)

Modified McLane Profiler

CTDCurrent meter + temperature **Optical Attenuation** CDOM Fluorometer + CHLBackscatter **Dissolved Oxygen**

PD01в May 3, 2025	Uperational	Enabled	
DP01B	(Operational	Enabled	
0-0 CE040SPD-DP01B-00-ENG000000	Uperational	🜲 Enabled	
0-0 CE040SPD-DP01B-01-CTDPFL105	Uperational	🔔 Enabled	al Good
CE040SPD-DP01B-02-VEL3DA105	Uperational	Enabled	al Good
🕬 🚥 CE040SPD-DP01B-03-FLCDRA103	Uperational	Enabled	al Good
CE040SPD-DP01B-04-FLNTUA103	Uperational	Enabled	al Good
CE040SPD-DP01B-06-DOSTAD105	Uperational	Enabled	d Good

May 2 Friday 20:47 итс 🔱

Slope Base [DP01A] - Offline, ground fault in dock **Could not turn 2024 because on Atlantis Oregon Offshore [DP01B]- 1,420,203 **Traversing 70 m - flawed cable from manufacturer Axial Base [DP03A]- 2,365,463 **Will turn on Sally Ride August 2025

Important RCA User Community: Earthscope Consortium (IRIS) RCA Metrics International User Community

March All seismometers operational (1 turned since 2014)

Important RCA User Community: Earthscope Consortium (IRIS) RCA Metrics

Broadband Hydrophones (HYDBB) Update: Sampling Rate Increase

A decade (350,000 hrs) of broadband hydrophone data from 6 instruments spanning seafloor to 200 m platforms

Moving Forward: OOIFB Acoustic Summer School (July '25) will provide SME and user feedback on higher frequency data utility.

Background: All six HYDBB are currently sampling at 64 kS/sec. Science requirements are for 256 kS/sec.

Recent Developments:

- Upgrade of Navy W-E transmission line from 45 Mbps to 1 Gbps nearing completion and testing will be forthcoming.
- RCA visualization tools for QA/QC of HYDBB data streams implemented.
- Update of CI HYDBB data processing to include production of user-friendly FLAC files in addition to MSEED format near Alpha Testing stage.
- Navy-APL contractor for data diversion switch will support pilot test of increased HYDBB sampling rate for a day.

120khz (CW)

EK80 draft echogram produced by J. Case using OOI software incorporating Echopype code; shallow profiler track can be seen in the signal

Technology Refresh: Kongsberg EK80 Cabled Sonars(ZPLSC-B) Status

Current Sampling Strategy (2024-2025)

• OR Shelf sonar (80 m) running in CW power/angle advanced sequence mode; produces one sequential ping per second at each frequency (38, 120, and 200 kHz)

• OR Offshore sonar (200 m) exhibited large noise spikes at CW target frequencies, so running in limited frequency FM mode, using an advanced sequence with sequential pinging; produces one ping per second using the following frequency ranges:

- 200: 190-192 khz
- 120: 124-126 khz
- 38: 39-41 khz

Summer 2025 Deployment Planning

- EK80 processing is making progress, with assistance
- Vendor has released new shoreside data logging and control software that may reduce noise
- Calibration of new instruments in Lake Washington on 2 May

O Plan for 2025 Summer School

- Run for 2 months in interleaved FM/CW mode to maximize utility of data for test processing by attendees
- Working with Chris Bassett (UW/APL) and Wu-Jung Lee (SME and Summer School lead) to draft a ping sequence that will minimize noise and maximize data collection

Technology Refresh: Nortek Signature500 5-beam ADCP (VADCP-B)

Standard binned ADCP current speed & direction output

Slope Base Shallow Profiler Platform (200 m depth) with Nortek Signature500 in upper left and co-located 150 kHz RDI ADCP in lower left (Credit: UW/NSF-OOI/WHOI, J2-1606, V24)

Noise testing and modified sampling

Refresh for custom Teledyne RDI 5-beam instrument - VADCP-A was no longer supported by Teledyne

Current Operational Mode VADCP-B:

 Initially running ASCII output due to port input/output capability requirements for plugging into the cabled nodes and ease of parsing

• Largely the same L0 output parameters as VADCP-A, including 5th beam for vertical velocity correction (only the error calculation is different from RDI)

• 500 kHz, 25-degree slant beam, 1m bins (see below)

• Worked with APL and CI to implement new driver and algorithm for this instrument; currently delivering data on production

• Ran 48 hour test with co-located ADCPs powered down to try to eliminate acoustic noise (03-04 April 2025)

 Data processing still in progress, but no significant changes or extension to the effective range

• Will likely change bin size to 0.5 m to maximize resolution over the effective range and implement higher-rate burst sampling to collect turbulence measurement data (as per SME input)

• Working to create SME community group to assist in further sampling strategy and data processing refinements

Axial Seamount: The best imaged submarine volcano

Kent, G.M et al., (2025) Melt focusing along lithosphere-asthenosphere boundary below Axial Volcano. *Nature*, <u>https://doi.org/10.1038/</u> <u>s41586-025-08865-8</u>

Machine Learning Applied to RCA Acoustic Data: Axial Seamount

Using RCA hydrophones to measure depth-averaged deep ocean temperature at ~ 3 km scales

J. Ragland and S. Abadi (2024) Using ocean ambient sound to measure local integrated deep ocean temperature. *Geophys. Res. Lett.* <u>https://doi.org/</u>10.1029/2024GL108943

OCEAN OBSERVATORIES

Substantial Increase in Earthquake Detection Using DAS on the RCA

Shen, Z. and W. Wu (2024) Ocean bottom distributed acoustic sensing for oceanic seismicity and seismic ocean thermometry J. Geophysical. Res., https://doi.org/ 10.1029/2023JB027799

Cable "Dark" 2021

- Ocean Networks Canada.
- ocean (seismic ocean thermometry)

Ouring the 4-day community experiment in 2021, 92 oceanic earthquakes were detected (T wave) events), with most missing from existing seismic catalogues and 3 times the number measured by

Sased on close examination of Blanco repeating earthquakes, for earthquakes as small as M3.5, DAS outperforms ocean bottom seismometers for measuring temperature in the deep

> 200 Hz, 500 Hz and 1000 Hz North Array 200 Hz South Array

The FIRST Community DAS Experiment on a "Lit" Cable & Rapidly **Advancing DAS-Like Technology**

Shi et al., (2025) Multiplexed Distributed Acoustic Sensing Offshore Central Oregon (2025) Seismological Res. Letters. <u>https://doi.org/10.1785/0220240460</u>

Cable "Dark" 2004 May 6-May 7 Cable "Lit" 2004 May 7-May 10

Imaging the subseafloor to the oceans surface every 100 m over 525 km

New generation of DAS-like system using ultra-stable laser allows monitoring through repeaters e.g 525 km out to Axial Seamount, south along the Cascadia Margin to 80 m water depth Every 100 m of cable becomes a sensor, full time presence on cable = early warning detection system along the Cascadia Margin.

Lipovsky et al., RAPID: Multiplexed Distributed Acoustic Sensing (DAS) at the OOI RCA (NSF - OCE 2415521)

Transforming Ocean Sensing

• Optical multiplexing (combining signals of different wavelengths) operating independently within the same optical fiber allowed fiber to be lit with NO impact on RCA communications. 41 m gauge length

Documented ocean surface gravity waves - high frequency waves, low frequency dispersive swell, microseisms, Scholte waves, infragravity waves (Earths hum - waves breaking on shore).

Cascadia Offshore Subduction Zone Observatory (COSZO) Update:

Research Infrastructure: Mid-scale RI-1 (M1:IP): Creating an Offshore Subduction Zone Observatory in Cascadia with the Ocean Observatories Initiative Regional Cabled Array (OCE 2329819 \$10.65M), Wilcock et al., 2023-2027.

The goal of COSZO is to install a "critical mass" of cabled geophysical infrastructure crossing the Cascadia Margin to collect continuous, high-fidelity data enabling the scientific community to address fundamental questions on how subduction zone faults work and to provide a facility to support the development of the Nation's first offshore real-time earthquake and tsunami warning detector.

Cascadia Offshore Subduction Zone Observatory (COSZO) Update: Provides critical infrastructure and instrumentation across the Cascadia Margin and significant technological advancements

3 junction boxes (SJ01B, SJ01C, SJ01D) on 20 cables at "empty" Primary Nodes and 23 key instruments to monitor deformation and seismic Each junction box will have open ports for addit PI instruments.

New junction boxes include important upgrades to original over a decade old design

	Instrument	Installation Site
Oregon Shelf	Seafloor science junction box	PN1B, PN1C, PN
BB 80 m smometer	Ocean bottom seismometer, accelerometer, digital recorder	PN1B, PN1C, PN1D, I
80m	Low-frequency hydrophone	PN1B, PN1C, PN1D, I
	Differential pressure gauge	PN1B, PN1C, PN1D, I
-0	Pressure guage	PrePN1B, PN1C, P
-4000 m 50 m contours	Ocean current meter	PN1B, PN1C, PN
)0 m	Self-calibrating pressure sensor (SCPR)	PN1B, PN1C,
city. Tional	Geodetic & seismic sensor module (GSSM)	PN1B, PN1C, PN
	Data to be streamed into	IRIS - Earthsco

Engagement

- **Undergraduate Education Example Projects Using RCA Data** 13 undergraduate science and engagement projects (spanning seismicity, biology, chemistry, machine learning - imagery etc)
- 7 long-term undergraduate projects, with four senior thesis/capstone projects (presented at 3 UW symposiums). Three year thesis/capstone projects and three presentations at national meetings
- Machine Learning. UW NSF Postdoc Katie Bigham* and VISIONS student Ada Carter - Developed an open source textbook for facilitating undergraduate education in marine computer vision "Computer Vision across the Marine Sciences OceanCV.org" Winter Quarter 11 students created their own models focus of two thesis projects (phytoplankton and Pythias Oasis macrofaunal machine learning).
 - *currently can process 50,000 images with annotations in two hours.

Engagement

- Very Exciting Collaboration "The Midnight Zone Black Smoker 2025" Collaboration with<u>Julian Charrière</u> (Berlin Germany) and two colleagues developing a 6-month duration exhibition in Switzerland.
- Incorporating RCA live streaming broadband and low-frequency hydrophone and seismometer) predominantly focused on Axial Seamount. Insonify sound waves = earthquakes, explosions, whales, rain etc.
- Specialized room with 50 floor transducers and a 3D audio dome sound system with 17 sound sources controlling each sound independently. In total darkness visitors will listen/feel the underwater sound ecosystem. PI's also contributing to this effort include W. Wilcock and S. Abati (UW) and J. Caplan-Auerbach (Western Washington University). The artists are hoping that the exhibit comes to the US.

0	Ŋ,
a	
0	5
10	1
1	j,
-	
2	3
)
-	4
	2
The	1
1212	
S	i.
-	È.
0	É.
2	2
-	3
1.1.	ł.
-	1
0	5

Development of Internal RCA QA/QC Status Dashboard Wendi Ruef

▼ Automated QA/QC

QARTOD Manaul

QARTOD Test	Test Guidance	Parameters	Status	
Gap	Required	temperature, conductivity, salinity, pressure	In Development	
Syntax	Required	temperature, conductivity, salinity, pressure	In Production	
Location	Required	temperature, conductivity, salinity, pressure	In Production	Man
Gross Range	Required	temperature, conductivity, salinity, pressure	In Production	Autor
Climatology	Required	temperature, salinity	In Production	Autor
Spike	Strongly Recommended	temperature, conductivity, salinity, pressure	In Development	
Rate of Change	Strongly Recommended	temperature, conductivity, salinity, pressure	In Development	
Flat Line	Strongly Recommended	temperature, salinity	In Development	
Multi-Variate	Suggested	temperature, salinity, pressure	Not Started	
Attenuated Signal	Suggested	temperature, conductivity, salinity, pressure	Not Started	

Implementation

estimated completion 6/2025

Parser software; no automated data flags

ual location checks during deployment and recovery; no automated data flags

mated data flags based on compiled tables: View Tables

mated data flags based on compiled tables: View Tables

estimated completion 6/2025

estimated completion 6/2025

estimated completion 6/2025

estimated completion unscheduled

estimated completion unscheduled

0	Ŋ,
a	
0	5
10	1
1	j,
-	
2	3
)
-	4
	2
The	1
1212	
S	i.
-	È.
0	É.
2	2
-	3
1.1.	ł.
-	1
0	5

OOI RCA QAQC Status Summary by Site Location

		Reset Dashboard
QA/QC Status Dashboard	Location	Close Dashboard
🛄 APL Status Dashboards 🔉 🔉	Select Location	~
views Data: by Site	OOI RCA QAQC Status Summary	
Data: by Platform Type	Locations	
Data: Stage 1	► Oregon Shelf BEP	
Data: Stage 2	► Oregon Offshore BEP	
Data: Stage 3	► Oregon Offshore Shallow Profiler	
Data: Stage 4	► Oregon Offshore Deep Profiler	
Data: By Status		
	► Slope Base Shallow Profiler	
	► Slope Base Deep Profiler	
	► Slope Base Sea Floor	

0	Ŋ,
a	
0	5
10	1
1	j,
-	
2	3
)
-	4
	2
The	1
1212	
S	i.
-	È.
0	É.
2	2
-	3
1.1.	ł.
-	1
0	5

OOI RCA QAQC Status Summary by Instrument

		Reset Dashboard
QA/QC Status Dashboard	Location	Close Dashboard
APL Status Dashboards	Select Location	~
VIEWS		
Data: by Site	OOI RCA QAQC Status Summary	
Data: by Platform Type	Locations	
Data: Stage 1	▼ Oregon Shelf BEP	
Data: Stage 2	► CTD/Oxygen	
Data: Stage 3	► ADCP	
Data: Stage 4		
Data: By Status	VELJD	
	► OPTAA	
	► pCO2	
	►pH	

0	Ŋ,
a	
0	5
10	1
1	j,
-	
2	3
)
-	4
	2
The	1
1212	
S	i.
-	È.
0	É.
2	2
-	3
1.1.	ł.
-	1
0	5

OOI RCA QAQC Information by Instrument

DATA QA/QC	▼ Oregon Shelf BEP	Reset Dashboard
QA/QC Status Dashboard	▼ CTD/Oxygen	Close Dashboard
APL Status Dashboards	► Automated QA/QC	
ews Data: by Site	► HITL QA/QC	
ata: by Platform Type	► Data Links	
ata: Stage 1	Discrete Semples	
Pata: Stage 2		
Data: Stage 3 Data: Stage 4	► Data QA/QC Reports	
Data: By Status		

0	Ŋ,
a	
0	5
10	1
1	j,
-	
2	3
)
-	4
	2
The	1
1212	
S	i.
-	È.
0	É.
2	2
-	3
1.1.	ł.
-	1
0	5

