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My Background

* BSc in Oceanography from the University of
Washington

* Worked for the OOl Regional Cabled Array
team

* PhD in Marine Biology from Victoria
University of Wellington with joint position at
NIWA

* Currently NSF OCE Postdoctoral Fellowship
using RCA imagery and machine learning




PRF Goals

* OCE-PRF: Using machine learning to investigate temporal dynamics of
methane seep fauna at the Ocean Observatories Initiative (OOI) Regional
Cabled Array

* 1) Explore temporal dynamics of benthic fauna at a methane seep with over a
decade of imagery (~37 TB in 2022)
* Digital still images from a stationary camera that takes 3 picture every half hour (2014-present)
* ROV imagery from annual construction/operation and maintenance cruise (2008-present)

* 2) Develop machine learning pipelines to assist with processing large volumes of
imagery




RCA Digital Still Cameras

* 6 digital still cameras

* 3 water column on 200 m platforms
* 3 seafloor-Southern Hydrate Ridge, Axial Seamount, and Oregon Offshore




RCA Digital Still Cameras

* Sampling scheme
* Turns on every half hour and takes 3 pictures

ﬁnage Collection Col \
&/

Raw Data Archive
rawdata.oceanobservatories.org

~2-3TB
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Regional Cabled Array
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Regional Cabled Array
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Southern Hydrate Ridge (SHR)

* Methane seep

* 90 km west of Newport,
Oregon

* ~780 m water depth
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Southern Hydrate Ridge (SHR) - Biology

* Chemosynthetic environment
* Bacterial mats

 Symbiotic bacteria hosted by
clams

* Hosts large community of
megafauna including many
commercially fished species

* Rockfish (1)

* Hagfish (5)

* Halibut and other flatfish (2 & 4)
* Crabs (6)




SHR Time Lapse Aug 2022 - Aug 2023




SHR Fauna Counts Aug 2022- Aug 2023
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SHR Fauna Counts Aug 2022- Aug 2023

bl

i
il

I |
|
|
| i
1 e |
[V il |
| 1A Wl | | |
September 22 October 22 10 17 24 November 22 14 21 December 22 12 19 January 23 @ 16 23 February 23 13 20 March 23 13 20 27 Apeil 23 10 17 24 May 23 8 15 22 June 23 12 12 28 July 23 10 17 24 August 23 7 14 21
.

1 image every 1 image every day
2 hours

Chris Moon
UW Undergrad




SHR Fauna Counts Aug 2022- Aug 2023
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ML and CV and Al, Oh My

* Do | really have to count all those animals?
* 1year of images from SHR is >50,000 images
* 1 image every 2 hours for 365 days = 4,380 images

* For 1 PhD chapter | annotated 5,795 images

 Can’tthe computer count them for me?




ML and CV and Al - some definitions

* Artificial Intelligence (Al): ability of a machine to mimic human
Intelligence, learning, reasoning, and problem solving

* Machine Learning (ML): a subset of Al, uses algorithms and statistical
models to perform complex tasks without explicit instruction

 Computer Vision (CV): a type of Al that uses ML to teach computers to
understand visual data




ML and CV and Al, Oh My
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ML and CV and Al, Oh My

* Why is it so challenging?
* Lack of images to train from

* Unique challenges posed
by the marine environment
* Water makes things weird




ML and CV and Al, Oh My

e Solutions?

* Individual researchers and groups
are developing bespoke models




ML and CV and Al, Oh My

e Solutions? BB * FathomNet
otutions: V o =2  Database of

* Individual researchers and FATH&MNET e magos
groups are developing

bespoke models

e

* As a community we are
building shared resources
of training sets and models

e FathomVerse

e Community
science
0 * Phone based app
athomverse A e Currently has
g ~270 RCA images




Accelerating RCA annotations with CV

* Developing machine learning pipelines to assist with processing
large volumes of imagery
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Accelerating RCA annotations with CV

e Machine assisted
annotations

* Pseudo-active training style

* Dataset agnostic — being
used on multiple sets of
Images at the moment by
my students

{ //__

/ Image Processing

|I 1) Manual Annotation
* Roboflow, BIIGLE,
Labelimg

Ann ttdlmg

6) Manual Validati

on

2) Preprocessing/cleaning

= Crop unusable parts of image
* Tile, resize images, etc.

o

Biologic Data
Counts per

image
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|

Inferred Annotated
Images

5) Predict
*+ Change inference parameters:
confidence and IOU threshold

Model Metrics

MAP: 28.1%-72.8%
Precision: 47.9%-85.3%
Recall: 26.3%-66.2%

4) Test/
Va idate

3) Train

+ Roboflow, Ultralytics
+* Runstake ~1-24 hours

YDLOV8/ Loc :
YDLOVQ GeForce RTX
4090

al GPU




Machine Assisted Annotation Example

Nikola Jenkins

smith Coliege - senior ® HOW have fine scale habitats
at SHR changed through
time?

| » Using ROV imagery
collected in 2011 and 2022

during RCA construction
and maintenance cruises

* Fully manual
 2-3weeks to annotate ~100 images

e Machine assisted
* 1 weektoannotate ~100 images




Moving towards fully automated annotations

<3
Raw Images

6) Manual Validation

— [aJ| —

Inferred Annotated
Images

5) Predict
*+ Change inference parameters:
confidence and 10U threshold

Model Metrics
MAP: 28.1%-72.8%
Precision: 47.9%-85.3% _
Recall: 26.3%-66.2% 4) Test/
Validate

\ Predict annotations using

2) Preprocessing/cleaning
= Crop unusable parts of image
+ Tile, resize images, etc.

3)Train LOCalized version of FathomNet model ll I
+ Roboflow, Ultralytics
* Runstake ~1-24 hours

YOLOv8/ Local GPU:
YOLOVY GeForce RTX
4080

FathomNet Model

Biologic Data

Atticus Carter
UW Ocean - Junior




SHR Fauna Counts Jan 2023- Dec 2023

Total Annotations, Species Richness, and Shannon-Wiener Index Over Time

* 1 year of imagery (~50,000
Images)

* 2-3 hours to produce

Value

e Still a lot of room for

4
improvement in this model .
* Training a new version right
now .
G X ) e AN A SN A e .
Jan 2023 lar 2023 3 2023 Sep 2023 o

- Total Annotations (7-day Avag)

— Species Richness (7-day Avg]

— Shannon-Wiener Index (7-day Avg)

Atticus Carter
UW Ocean




Expanding RCA annotations with CV

 Track individuals

e Total counts of individuals
along with instances

* Path tracking —where do
animals go and how long do
they stay

id:223 Sebastes 0.87

L% 0 id:222 Sebastes 0.93
Atticus Carter B . 1 T 2 RO fff
UW Ocean B o ' :




Expanding RCA annotations with CV

 Track individuals

e Total counts of individuals
along with instances

* Path tracking —where do
animals go and how long do
they stay

Atticus Carter
UW Ocean
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Start

Pathing of a rockfish




3D Axial Hydrothermal Vents

* Goal: explore biologic communities on hydrothermal vents
* Changes in space and time
* Driving abiotic factors

* Using ROV imagery from
RCA cruises

* 3D models allow for fine
scale mapping and
volume estimates

S

Atticus Carter
UW Ocean




Computer Vision Tutorials

* Ocean CV - Jupyter Binder

* Afull suite of computer vision tutorials
with tailor made marine example sets Original Image CLAHE Enhanced Image

* Soft launch January 2025
* Teaching 10 undergrads in winter

q ua rte r KMeans on Original Image KMeans on CLAHE Image

* Soliciting feedback and improving the
course and notebooks

RCA video and imagery used extensively
throughout as examples

Atticus Carter  Computer Vision
UW Ocean

Across the Marine Science
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