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Abstract Dinitrogen (N,) fixation can alleviate N limitation of primary productivity by introducing
fixed nitrogen (N) to the world's oceans. Although measurements of pelagic marine N, fixation are
predominantly from oligotrophic oceanic regions, where N limitation is thought to favor growth of
diazotrophic microbes, here we report high rates of N, fixation from seven cruises spanning four seasons in
temperate, western North Atlantic coastal waters along the North American continental shelf between
Cape Hatteras and Nova Scotia, an area representing 6.4% of the North Atlantic continental shelf area.
Integrating average areal rates of N, fixation during each season and for each domain in the study area, the
estimated N input from N, fixation to this temperate shelf system is 0.02 Tmol N/year, an amount equivalent
to that previously estimated for the entire North Atlantic continental shelf. Unicellular group A
cyanobacteria (UCYN-A) were most often the dominant diazotrophic group expressing nifH, a gene
encoding the nitrogenase enzyme, throughout the study area during all seasons. This expands the domain of
these diazotrophs to include coastal waters where dissolved N concentrations are not always depleted.
Further, the high rates of N, fixation and diazotroph diversity along the western North Atlantic continental
shelf underscore the need to reexamine the biogeography and the activity of diazotrophs along continental
margins. Accounting for this substantial but previously overlooked source of new N to marine systems
necessitates revisions to global marine N budgets.

Plain Language Summary Measurements suggest that at present, the marine nitrogen (N)
budget is not balanced, and that rates of N losses exceed rates of N inputs in the world's oceans.
Identifying quantitatively significant sources of new N inputs via marine dinitrogen (N,) fixation could
potentially offset this imbalance. Here we provide an unprecedentedly large data set showing high rates of
seasonally and interannually averaged N, fixation rates over a large swath of western North Atlantic Ocean
coastal waters along the continental shelf of North America, an area where N, fixation was previously
thought to be negligible. If marine N, fixation has also been seriously underestimated in other coastal
systems, global estimates of N inputs from N, fixation need to be revised upward, offsetting the current
marine N budget imbalance.

1. Introduction

Biological dinitrogen (N,) fixation is an important input component for marine nitrogen (N) budgets that
can alleviate N limitation of primary productivity in oligotrophic ocean regions (Capone et al., 2005;
Carpenter & Capone, 2008; Montoya et al., 2004; Zehr & Paerl, 2008). However, biogeography and activity
of diazotrophs in coastal regions, where high concentrations of fixed N are thought to inhibit N, fixation,
has not been broadly examined. Estimates suggest that 21-30% of primary productivity in the ocean occurs
on the continental shelf (Jahnke, 2007); however, geochemical and climatological models are poorly
resolved there because of their spatial and temporal heterogeneity (Deutsch et al., 2007; Gruber &
Sarmiento, 1997). Geochemical models suggest that marine N, fixation rates have been underestimated
and so identifying additional realms where biological N, fixation occurs may help balance global N budgets
(Gruber & Sarmiento, 1997; Galloway et al., 2004; Codispoti, 2006; Deutsch et al., 2007; Landolfi et al., 2018).
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Until recently, planktonic N, fixation was thought to be restricted to oligotrophic tropical and subtropical
systems where certain cyanobacterial diazotrophs are known to thrive (Carpenter et al., 1999; Carpenter
& Capone, 2008; Church et al., 2005; Langlois et al., 2005; Moisander et al., 2010; Needoba et al., 2007).
‘We now know that marine diazotrophs are diverse and include unicellular cyanobacteria as well as noncya-
nobacterial diazotrophs that occupy a wider range of marine habitats than previously thought (Berthelot
et al., 2017; Bombar et al., 2016; Messer et al., 2016; Moisander et al., 2010; Rees et al., 2009; Zehr &
Turner, 2001), but we know little about their physiological capabilities and environmental controls on their
biogeography. N, fixation was thought to be trivial in coastal waters, including the North American conti-
nental shelf in the western North Atlantic Ocean, because higher dissolved N inputs and concentrations
were thought to inhibit diazotrophic growth and activity (Conley et al., 2009; Howarth et al., 1988;
Marino et al., 2002; Nixon et al., 1996; Zehr & Paerl, 2008). Based on their phylogenetic affiliations and
the lack of quantifiable N, fixation rates, the high nifH gene diversity and presence of diverse bacterial dia-
zotroph groups in coastal systems were attributed to microorganisms being transported there from terrestrial
systems or sediments, rather than to autochthonous populations of active planktonic diazotrophs (Jenkins
et al., 2004; Zehr et al., 2003). Until recently, few rate measurements were available from coastal waters
(Conley et al., 2009; Howarth et al., 1988). High N, fixation rates have now been measured during summer
in temperate northwestern Atlantic and Pacific coastal waters when dissolved N concentrations in surface
water were seasonally depleted (Mulholland et al., 2012; Shiozaki et al., 2015), in temperate and tropical
coastal systems (Cassar et al., 2018; Chen et al., 2014; Grosse et al., 2010; Larsson et al., 2001; Moisander
et al., 2010; Mulholland et al., 2012; Rees et al., 2009; Shiozaki et al., 2015; Voss et al., 2006; Zhang et al.,
2012), in nutrient-rich coastal upwelling systems (Voss et al., 2004; Wen et al., 2017), and in coastal Arctic
Seas (Blais et al., 2012; Harding et al., 2018; Sipler et al., 2017), broadening the latitudinal range and the
diversity of habitats supporting diazotrophy. Active N, fixation and expression of nifH (the gene encoding
the iron protein in the N,-fixing nitrogenase enzyme) have been measured in nitrate (NO;™)-replete (~10
uM) upwelling waters in the eastern tropical Atlantic Ocean (Voss et al., 2004. Sohm et al., 2011), in surface
waters with elevated nitrate (NO5;™) concentrations in the Pacific Ocean (Moisander et al., 2010), and in
coastal waters influenced by the Mekong River plume (Bombar et al., 2011; Grosse et al., 2010; Voss et al.,
2006). Even within the tropical North Atlantic basin, where high rates of N, fixation have long been asso-
ciated with Trichodesmium blooms (e.g. Capone et al., 2005), it now appears that the unicellular symbiotic
diazotroph UCYN-A contributes substantially to new N inputs (Martinez-Pérez et al. 2016).

Globally, the continental shelf comprises just 8% of the world's oceans at present, but these regions contri-
bute disproportionately to primary productivity and carbon (C) sequestration relative to oceanic realms
(Jahnke, 2007; Muller-Karger et al., 2005) thereby influencing global C budgets. Along riverine and estuar-
ine influenced continental shelf regions such as the western North Atlantic continental shelf, inputs of ter-
restrial and fresh water microbes can be augmented by tropical and subtropical diazotrophs introduced into
coastal waters from mixing with oligotrophic Gulf Stream waters where N, fixation is known to occur
(Capone et al., 2005; Carpenter & Capone, 2008; Mulholland et al., 2012). Previously, we found high rates
of N, fixation rates and abundant nifH gene copies during summer in coastal waters influenced by the
Chesapeake and Delaware Bay plumes and in coastal waters between Cape Hatteras and the Gulf of
Maine; and the presence of gene copies from tropical diazotrophs was detected in mid-Atlantic shelf waters
north of Cape Hatteras and along Georges Bank (Mulholland et al., 2012). In the present study, N, fixation
rates and diazotroph abundance are reported from seven cruises in the western North Atlantic Ocean along
the North American continental shelf between Cape Hatteras to the Gulf of Maine, spanning 10° of latitude
and longitude (Figure 1). Cruises were conducted over a 4-year period and were undertaken in all four sea-
sons: two each in spring, summer, and fall, and another in winter. This represents the most comprehensive
assessment of planktonic N, fixation rates from spatially and temporally heterogeneous coastal waters
where N, fixation rates were previously thought to be negligible.

2. Materials and Methods

N, fixation rates were measured relative to nutrient concentrations and hydrographic properties during
seven of the National Oceanic and Atmospheric Administration's (NOAA) Ecosystem Monitoring
Program'’s ichthyoplankton surveys along the North American continental shelf in the western North
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Figure 1. Bathymetric map of the study region. The X symbols represent an example of the 120 stations sampled during a
quarterly NOAA NMFS Ecosystem Monitoring cruise. MMiddle Atlantic Bight; GB = George's Bank; GoM = Gulf of
Maine; SNE = Southern New England Shelf; CH = Cape Hatteras; NONational Oceanic and Atmospheric Administration;
NMFS = National Marine Fisheries Service.

Atlantic Ocean from Cape Hatteras to Nova Scotia between 35.7 and 44.1°N and —75.9 to —65.7°W. Five
cruises were aboard the NOAA vessel Delaware II between 17-28 August 2009, 3-19 November 2009,
2-17 February 2010, 26 May to 9 June 2010, and 6-21 November 2010, and two were aboard the NOAA
vessel Henry Bigelow between 3-15 June 2011 and 8-23 August 2012. The study area comprises four
ecoregions: the Mid-Atlantic Bight (MAB), between Cape Hatteras and 39.1°N; the Southern New
England Shelf (SNE), between 39.1°N and 41.5°N but west of —70°W; Georges Bank (GB) the shelf area
east of —70°W; and the Gulf of Maine (GOM, Figure 1). During each of the seven NOAA ichthyoplankton
surveys, a randomly stratified set of stations as well as three fixed positions were occupied within the
designated survey area.

Temperature, salinity, chlorophyll a fluorescence, and photosynthetically active radiation (PAR) profiles
were measured to a maximum depth of 500 m during each cruise using a Seabird conductivity, temperature,
and depth sensor and PAR sensor mounted to a 12-Niskin bottle sampling rosette. Water samples were
collected from 2 to 4 depths at each station, depending on the water depth, using Niskin bottles mounted
to the conductivity, temperature, and depth rosette. Samples were collected from the upper 6 m and near
the bottom at shallow stations where the water column was well mixed. When the water column was stra-
tified, samples were collected from the surface mixed layer and at the depth of the fluorescence maximum at
shallow stations. At deeper stations, water samples were collected from the surface mixed layer and the
depth of the fluorescence maximum as well as additional intermediary water depths. Water from Niskin
bottles was drained into acid-cleaned and copiously rinsed carboys to homogenize water for N, fixation rate
measurements. Water from Niskin bottles was gently pumped through 0.2-um Supor cartridge filters or
gravity filtered through Millipore filters to collect samples directly into rinsed duplicate sterile polypropylene
conical tubes for nutrient analyses. Samples for analysis of particulate N and carbon (C) and chlorophyll a
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were collected onto precombusted (450 °C for 2 hr) GF/F filters (nominal pore size of 0.7 um). Filters and
filtrate were frozen in sterile tubes until analysis. Nutrient concentrations were measured colorimetrically
using an Astoria Pacific nutrient analyzer according to manufacturer specifications. Ammonium concentra-
tions were measured manually using the phenol-hypochlorite method (Solarzano, 1969). Detection limits for
nitrate, nitrite, ammonium, and phosphate were 70, 70, 40, and 30 nM, respectively. Chlorophyll a concen-
trations were measured fluorometrically using the nonacidification method after extraction in acetone
(Welschmeyer, 1994). Euphotic depths were calculated as the depth at which PAR was 1% of
surface irradiance.

For uptake experiments, whole water from each depth was dispensed from carboys into acid-cleaned and
Milli-Q water rinsed incubation bottles. Tracer additions (< 10%) of highly enriched (99%) 15N,
(Cambridge Isotopes) were added to gas tight bottles using an opening and closing syringe (Montoya
etal., 1996). Incubation bottles were then transferred to deck incubators plumbed with flow-through surface
seawater to maintain near-ambient water temperatures and covered with neutral density screen to repro-
duce light levels at the depth of water collection. Incubations were terminated after 24 hr by filtration
through precombusted (450 °C for 2 hr) GF/F filters and frozen until analysis. Samples were dried and pel-
letized into tin discs for isotopic analysis using a Europa 20/20 mass spectrometer with an automated nitro-
gen and carbon analyzer preparation module. Rates of uptake were calculated using a mixing model, and
error was propagated as described previously (Gradoville et al., 2017; Montoya et al., 1996). Because of the
incomplete equilibration of '°N; tracer when it is introduced as a gas bubble (GroRkopf et al., 2012; Mohr
et al., 2010; Mulholland et al., 2012; Wilson et al., 2012), the bubble addition method used in this study
may have underestimated rates of N, fixation by a factor of 1.4 or more (Grofikopf et al., 2012; Mohr
et al., 2010; Mulholland et al., 2012). However, seawater equilibration of 15N2 gas in site water was imprac-
tical during cruises because of the randomized cruise track through hydrographically and biogeochemically
variable coastal waters, and the bubble removal technique (Jayakumar et al., 2017) had not yet been per-
fected in 2009 when the first cruises were undertaken. We calculate that if bubble equilibration took place
over the first 8 hr of our incubations and reached a maximum of 88% dissolution in the incubation bottles
(which were gently rolling in incubators over the incubation period) over that time period, our rates of N,
fixation could have been underestimated by a factor of about 1.8, similar to what we calculated previously
(1.4; Mulholland et al., 2012) and what has been estimated in direct comparisons of bubble addition and bub-
ble equilibration methods (2; Grof3kopf et al., 2012). We realize this calculation is imperfect given the varia-
bility in gas solubility with respect to sample agitation and temperature, both of which varied over the course
of cruises and incubation experiments. Further, a recent meta-analysis suggests that the underestimation of
N, fixation rates made using the bubble method may be negligible for 12- to 24-hr incubations, such as those
employed here (Wannicke et al., 2018). Therefore, rates presented here should be considered minimum rates
of in situ N, fixation.

To compare rates of N, fixation with environmental variables including dissolved inorganic N (DIN), dis-
solved inorganic phosphorus (DIP), the DIN:DIP ratio, and temperature, we made property-property plots
for the pooled surface data, data sorted by region, and data sorted by cruise and season. Because we found
no significant linear relationships between rates of N, fixation and any of those variables, we binned our sur-
face rates into increments of 2 °C temperature and 1-uM DIN to compare median N, fixation rates with tem-
perature and DIN concentrations as well as temperature and the DIN:DIP ratio.

Areal rates of N, fixation in the euphotic zone were calculated by integrating volumetric rates over the
euphotic zone. The euphotic zone was defined as the depth at which PAR was 1% of the surface PAR and
was measured directly during daylight hours. Because diazotrophs include autotrophic and heterotrophic
groups, we multiplied surface rate measurements by the depth of the upper mixed layer and the deeper rate
measurements by the difference between the depth strata from which they were collected and either the base
of the upper mixed layer or the depth of the nearest overlying rate measurement. We then added the depth-
integrated rates together over the entire water column (for shallow stations and when the water column was
well mixed), to the euphotic depth (for samples collected during the day), or to the deepest sampling depth or
upper 50 m (when samples were collected during the dark). The upper mixed layer depth was calculated
using the Levitus sigma-t criterion of 0.125 change from surface. Sea surface temperature (SST) maps on
which areal rates are superimposed were constructed using Group for High Resolution Sea Surface
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Figure 2. Areal rates of N, fixation (umol N~m_2-d_1) during cruises along the western North Atlantic continental shelf during February 2010 (top panel) and
May/June 2010 and June 2011 (bottom row). Depth-integrated rates are superimposed on satellite observations of the average surface water temperature during

the cruise period.

Temperature Level 4 MUR (v4.1) satellite data averaged over the cruise period (Jet Propulsion Laboratory
MUR MEaSUREs Project, 2015).

Samples were collected onto 0.2-um Sterivex filters for molecular analyses and immediately frozen and
stored in a liquid nitrogen dewar and transported to Old Dominion University, where they were transferred
to —80 °C freezers. Select samples were chosen for molecular analysis based on N, fixation rates. RNA and
DNA were coextracted from filters using the AllPrep RNA/DNA minikit (Qiagen) with minor adjustments
including a bead-beating step and a QIAshredder spin-column step. RNA was treated with amplification-
grade DNase I (Invitrogen) and converted to cDNA using SuperScript III first-strand synthesis primed with
the nifH3 primer (Zehr & Turner, 2001). Diversity of the active diazotroph community was investigated by
amplifying a partial nifH fragment from cDNA using degenerate primers and a nested polymerase chain
reaction (PCR) protocol (Zehr & Turner, 2001) with the adjustment that, in the second round of PCR,
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Figure 3. Areal rates of N, fixation (umol Nm~2d™h during cruises along the western North Atlantic continental shelf during August 2009 and 2012 (top row)
and November 2009 and 2010 (bottom row). Depth-integrated rates are superimposed on satellite observations of the average surface water temperature during the

cruise period.

primers were modified to include the Illumina overhang adapter sequences for two step amplicon
sequencing (http://www.illumina.com/content/dam/illumina-20support/documents/documentation/
chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf). Initial PCR products
were gel purified and continued through index PCR (http://www.illumina.com/content/dam/illumina-
support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-

15044223-b.pdf) and sequencing on an Illumina MiSeq sequencer using a 2 X 300-bp kit. Sequences were
demultiplexed and imported into the CLC Genomics Workbench (Qiagen, Germany). Reads were imported
in pairs, trimmed, and merged in CLC before being exported in fasta format. As the number of reads per
sample was not uniform, a random sampling of 20,000 reads was extracted from each set of sample reads
to normalize the data sets prior to analysis. NifH community composition was determined using the mini-
mum entropy decomposition pipeline (Eren et al., 2015). Representative nodes (what minimum entropy
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Table 1
Seasonal Mean and Median N Fixation Rates by Study Region
Seasonal range Seasonal avera§e Seasonal median Study area annual mean # of stations Study area annual median
(p.mol-m_2~d_1) (p.mol-m_z-d_ ) (p.mol-m_2~d_1) (umol-m_2~year_1) sampled (p.mol-m_z-year_l)
GB
Fall 0-843.1 230.9 226.6 61,173 n=13 50,340
Spring 0-393.6 88.2 73.6 n=13
Summer 36.4-1911 225.8 125.9 n=18
Winter 125.5 125.5 125.5 n=1
GOM
Fall 0-676 254.2 157.4 42,869 n=16 29,793
Spring 0-67.8 28.0 253 n=9
Summer 23-514.6 165.2 121.4 n=19
Winter 22.43 224 224 n=1
MAB
Fall 0-111 29.5 20.3 46,985 n=18 23,050
Spring 0-1694 289.1 120.6 n=26
Summer 4.6-600 138.3 75.1 n=23
Winter 0-162 58.0 36.6 n==6
SNE
Fall 0-4106 352.1 16.1 83,804 n=17 30,295
Spring 0-1735 210.1 44.7 n=20
Summer 27-873 313.2 225.2 n=18
Winter 0-81.3 43.0 46.0 n==o6

Note. MAB = Mid-Atlantic Bight; SNE = Southern New England Shelf; GoM = Gulf of Maine; GB = Georges Bank.

decomposition calls operational taxonomic units) were classified by nucleotide BLAST (Altschul et al., 1990)
against an in-house database of nifH sequences. We recognize the recent concern regarding the propensity
for amplicon sequencing to miss certain taxonomic groups of diazotrophs, in particular the genus Richelia,
the endosymbiont to the diatom Rhizosolenia.

To assess which single or combination of environmental variable(s) best explained the observed dissimilarity
of expressed nifH sequences between sites, a Bray-Curtis dissimilarity matrix was first generated in PRIMER
(v.6; Clarke & Gorley, 2006) from expressed sequence relative abundance and funneled into the BEST
analysis (Clarke & Ainsworth, 1993). Using the BIO-ENV algorithm (Spearman rank correlation method),
the Bray-Curtis dissimilarity matrix (Bray & Curtis, 1957) was compared to Euclidean distance matrices
generated from varied combinations of measurements (sample depth, bottom depth, temperature, salinity,
PAR, chlorophyll a concentration, nitrate plus nitrite concentration, phosphate concentration, net
primary productivity, and N, fixation rate). A permutation test (10,000 randomizations) was used to
determine significance.

3. Results and Discussion

Areal rates of N, fixation ranged from below detection to 4,106 umol N-m~2d™! during the seven cruises
(Figures 2 and 3, Tables S1-S7 in the supporting information). These rates are within or higher than the
ranges observed in tropical and subtropical oceanic regions (3.7-703 umol N-m~>.d™'; Capone et al., 2005;
Carpenter & Capone, 2008), and temperate oceanic waters (Mulholland et al., 2012; Rees et al., 2009).
Volumetric N, fixation rates were usually highest in surface waters where they ranged from below detection
to 130 nmol N-L™".d™" (Tables S1-S7) with many on the high end of those reported previously (Luo et al.,
2012 and references therein). N, fixation rates at the depth of the chlorophyll maximum were usually lower
than those measured in surface waters, ranging from below detection to 68.9 nmol N-L™'.d™* over all seven
cruises. Using seasonally averaged areal N, fixation rates for each of the four regions (MAB, SNE, GB, and
GOM) and integrating over a year, we estimate that the total planktonic N input from N, fixation in shelf
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Figure 4. Median (a) and maximum (b) volumetric N fixation rates (nmol N-L_l-d_l) binned by temperature and dissolved inorganic nitrogen (DIN) concentra-
tion (uM), along with the standard deviations of N fixation rates (c) and number of data points (d) within each bin. Statistics in Figures 4a and 4c were only cal-
culated for bins with a minimum of three data points.

waters between Cape Hatteras and Nova Scotia (35-45°N latitude) is about 0.02 Tmol N/year, (Table 1).
Even though the study region accounted for just 6.4% of the total North Atlantic continental shelf area,
we calculated that the annual N inputs from N, fixation were comparable to those estimated for the
entire North Atlantic continental shelf area (0.02 Tmol N/year; Nixon et al., 1996) and up to 7% of the
estimated basin-wide N inputs from N, fixation (Capone et al.,, 2005; Carpenter & Capone, 2008;
Mahaffey et al., 2005).

To better understand the biogeography of active N, fixation and diazotroph groups, hydrographic properties
and nutrient concentrations were also measured. Although high temperatures and low concentrations of
DIN, typical of the oligotrophic tropical and subtropical gyres, and eutrophic fresh and brackish water envir-
onments enriched in DIP relative to DIN, have been implicated as sites hospitable for diazotrophy (Conley
et al., 2009; Howarth et al., 1988; Zehr & Paerl, 2008), N, fixation was detected throughout the study area
even when DIN concentrations were measurable (range was below analytical detection to 10.9 umol N/L,
Figure 4) and when the DIN:DIP ratio was in excess of 16 (Figure 5), the average ratio of these elements
in marine primary producers (see also Tables S1-S7). Although there were no linear relationships between
N, fixation rates and DIN:DIP ratios (R* = 0.01) or DIN concentrations (R* = 0.02) during any of the cruises
(data not shown), in general, N, fixation rates were higher when DIN concentrations were less than 4 uM
(Figure 4) and DIN:DIP ratios less than 16 (Figure 5). However, the maximum observed N, fixation rates
for each bin did not always comply with this general pattern and data density was low at high DIN concen-
trations (Figure 4d) and DIN:DIP ratios (Figure 5d). The majority of our rate measurements were made in
waters where DIN concentrations were <5 uM. Active N, fixation was previously observed in NO; ™ -replete
(~10 uM) upwelled waters in the eastern tropical North and South Atlantic Oceans (Sohm et al., 2011; Voss
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Figure 5. Median (a) and maximum (b) volumetric N fixation rates (nmol N-L_l-d_l) binned by temperature and dissolved inorganic nitrogen (DIN):dissolved
inorganic phosphorus (DIP) ratios, along with the standard deviations of N, fixation rates (c) and number of data points (d) within each bin. Statistics in Figures 5a
and 5c were only calculated for bins with a minimum of three data points. The 16:1 DIN:DIP ratio is indicated with the broken black line.

et al., 2004), in NO; ™ -enriched surface waters in the Pacific Ocean (Moisander et al., 2010), and in N-replete
culture systems (Knapp et al., 2012; Mulholland et al., 2001).

In this study, N, fixation rates were generally, but not always, higher in the well-lit surface mixed layer
ranging from below detection to 130 nmol N-L™"-d™" (Tables S1-S7) where diazotrophic cyanobacteria
thrive. Planktonic N, fixation rates by some marine cyanobacteria are thought to be limited by temperature
(Carpenter & Capone, 2008). Indeed, higher rates of N, fixation were measured during cruises between June
and November, when surface water temperatures were warmer. However, linear regression analyses suggest
no relationship between water temperature and N fixation rates either in the pooled data (R* = 0.10) or in
surface waters (R* = 0.08). Binned data show that while rates of N, fixation were generally higher when
water temperatures were higher, maximum N, fixation rates were often observed at lower temperatures
(Figures 4 and 5). Further, the majority of our rate measurements were made when water temperatures were
between 12 and 20 °C. N, fixation by cyanobacteria was previously thought to be constrained to surface
waters with temperatures >20 °C (e.g., Carpenter & Capone, 2008), but more recently, active N, fixation
has been detected in higher-latitude temperate regions (Cassar et al., 2018; Moisander et al., 2010) and even
coastal Arctic Seas (Blais et al., 2012; Harding et al., 2018; Sipler et al., 2017). The high rates of coastal N,
fixation reported here are comparable to or higher than those measured in the temperate English
Channel (Rees et al., 2009) and coastal waters in the northwestern Pacific (Shiozaki et al., 2015) and
Atlantic (Cassar et al., 2018) Oceans; however, measurements from coastal systems are still sparse.

We note that the highest depth-integrated N, fixation rates were often associated with frontal features, char-
acterized by strong SST gradients during the late fall (November 2009 and 2010) and summer (June 2011 and
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Figure 6. Integrated N, fixation (umol N-m_z-d_l) for the November 2009 (a), November 2010 (b), June 2011 (c), and August 2012 (d) cruises plotted over the
absolute sea surface temperature (SST) gradient (°C/km) for the study region, calculated from the SST fields used to generate Figures 2 and 3. The SST gradient
is a proxy for the location of large-scale coastal open ocean front found along the shelf break of the northeastern coast of the United States.

August 2012) cruises (Figure 6). The patterns were less clear in spring and summer as the sampling during
those cruises either did not extend far enough offshore to reach the shelf break front (February and May
2010), or because few stations were sampled in the frontal region to visualize patterns (August 2009).
Although this result is only based on data from four cruises, it suggests the intriguing possibility that N,
fixation might be locally enhanced at the shelf break front along the northeast coast of the United States.
This enhancement may be due to a range of factors, including enhanced local vertical nutrient supply at
the front, the relief of temperature limitation at the front, or the mingling of diverse diazotrophic popula-
tions from coastal and open ocean communities.

Based on analyses of select samples, unicellular Group A cyanobacteria (UCYN-A) dominated the expressed
nifH sequences throughout the study area during all four seasons (Figure 7 and Table 2), consistent with pre-
vious observations of its distribution (Moisander et al., 2010). Relative abundances of UCYN-A were high at
stations on Georges Bank (latitudes >40°N), concurrent with observations that this organism thrives in
cooler water than tropical and subtropical cyanobacterial diazotrophs (Langlois et al., 2008; Moisander
et al., 2010). Trichodesmium was detected only at a station along the shelf break front where hydrography
was modulated by the Gulf Stream (Figure 6). At one nearshore station, Pseudomonas was the dominant
group expressing nifH.

BEST analysis (Clarke & Ainsworth, 1993) in PRIMER (v.6; Clarke & Gorley, 2006) was used to determine
what combination of environmental parameters (depth, temperature, salinity, PAR, chlorophyll a, nitrate
plus nitrite [NO,] concentrations, phosphate [PO,>~] concentrations, net primary productivity, and N, fixa-
tion rate) best explained diazotrophic community composition across the study region. As opposed to a
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Figure 7. Relative abundance of nifH genes expressed by dominant diazotrophic groups during spring and summer
cruises (top panel) and fall and winter cruises (bottom panel). UCYN-A isolates are from Station Aloha in the tropical
North Pacific (ALOHA) and from the eastern North Pacific in coastal waters near Scripps Institute of Oceanography (SIO)
in San Diego, CA, USA.

canonical correlation, this approach compares rank similarity matrices of community structure and
environmental parameters. The strongest correlation to Bray-Curtis community dissimilarity (Bray &
Curtis, 1957) occurred through the combination of temperature, chlorophyll a, [NO,], and net primary
productivity (Spearman pg = 0.549, p = 0.012; Table 2). When chlorophyll a concentrations were excluded
from the analysis, the combination of temperature, [NO,], and net primary productivity still offered the
strongest correlation (Spearman ps = 0.535, p = 0.022), suggesting that these factors are closely linked to
diazotroph community composition.

Temperature, [NO,], and primary productivity can all vary between water masses as well as vacillate season-
ally within water masses (Tables S1-S7). The correlation between diazotroph community composition and
these combined factors may thus represent regional and seasonal variations in diazotroph community
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Table 2

Diazotroph Diversity at Select Stations and Depths Along the Mid-Atlantic Continental Shelf During Seasonal Cruises Between November (Nov) 2009 and August

(Aug) 2012

Relative abundance of group (%)
Shannon Shannon's N, fixation UCYN-A UCYN-A

Long Lat Depth Temp. diversity equitability rate (nmol isolate isolate  Pseudomonas T.

(°W) (°N)  Location  Date (m) (°C)  index (H) (Ew) N-L_l-d_l) ALOHA SIO sp. thiebautii  Other

—69.929 40.150 SNE June 17.2 11.3 0.610 0.340 134 (1.4) 25.27 74.71 0.01 0.01
2011

—74.045 39.563 MAB Feb 1.83 24 0.062 0.030 2.04 (3.2) 0.17 0.43 99.09 0.06 0.26
2010

—75.632 36.483 MAB May 1.93 19.1 0.596 0.287 17.8 (6.1) 26.49 73.43 0.07 0.02
2010

—75.632 36.483 MAB May 9.73 14.0 0.578 0.278 1.34 (2.8) 25.20 74.73 0.01 0.06
2010

—75.632 36.483 MAB May 19.8 13.3 0.698 0.336 1.77 (2.5) 37.60 62.28 0.07 0.01 0.05
2010

—65.775 41.680 GB Nov 34.7 10.5 0.441 0.227 6.36 (2.9) 0.09 85.31 14.26 0.34
2010

—67.667 42.019 GB Aug 2217, 18.0 0.075 0.042 1.97 (1.0) 98.79 1.17 0.03 0.01
2012

—71.785 40.476 SNE June 18.1 12.7 0.810 0.307 6.00 (1.1) 19.95 79.80 0.09 0.04 0.12
2011

—71.785 40.476 SNE June 321 8.0 0.608 0.253 0.87 (0.4) 81.54 15.15 1.49 1.82
2011

—69.929 40.150 SNE June 30.4 12.0 0.910 0.438 BDL 65.82 33.52 0.60 0.07
2011

—67.915 41.019 SNE June 40.5 10.3 0.571 0.274 9.12(1.3) 83.32 7.42 9.22 0.02 0.01
2011

—72.495 39.725 SNE June 22.5 15.2 0.402 0.250 6.96 (0.8) 8.93 90.69 0.38 0.01
2011

—71.274 40.051 SNE Nov 243 14.8 1.135 0.473 4.50 (2.1) 0.07 48.69 1.25 49.52 0.48
2009

—71.274 40.051 SNE Nov 19.1 14.8 0.209 0.079 2.08 (1.9) 0.05 95.87 3.28 0.03 0.77
2009

—74.445 38.443 MAB May 243 15.7 0.711 0.342 5.56 (2.0) 0.04 99.76 0.06 0.14
2010

—74.445 38.443 MAB May 21.4 6.6 0.493 0.214 0.80 (1.7) 0.05 99.86 0.01 0.01 0.08
2010

—70.146  40.026 SNE Nov 0 1.312 0.424 82.1(27.0) 20.16 56.01 2.16 15.67 5.99
2010

Note. MAB = Mid-Atlantic Bight; SNE = Southern New England Shelf; GB = Georges Bank.

composition with respect to water masses and their interactions. Temperature, however, is also known to
influence rates of enzymatic activity and microbial growth rates. Consequently, temperature is typically a
major driving force in defining the realized niches of many marine microbes, including some diazotrophs
(Carpenter & Capone, 2008). For example, filamentous cyanobacterial diazotrophs such as Trichodesmium
generally inhabit warmer waters (Breitbarth et al., 2007; Capone et al., 2005) while UCYN-A and some
proteobacterial diazotrophs are active under a much broader range of temperatures (Harding et al., 2018;
Martinez-Perez et al., 2016; Moisander et al., 2010).

Concentrations of NO, are also thought to be fundamental to delimiting the range of certain diazotrophs as
N, fixation by many groups are thought to be inhibited by the presence of fixed N (Carpenter & Capone,
2008). However, it now appears that some diazotrophic groups may be more sensitive to this effect than
others, thereby influencing the composition of diazotroph assemblages in waters bearing significant NO,
concentrations or subject to NO, inputs (Foster et al., 2007; Moisander et al., 2012; Mulholland et al.,
2001; Voss et al., 2006). For example, certain symbiotic diazotrophs appear to lack genes necessary to trans-
port and assimilate some forms of dissolved inorganic N (Caputo et al., 2018) and may thus be less responsive
to changes in ambient N concentrations than other diazotrophs. Both temperature and NO, concentrations
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may thus play a direct role in shaping diazotroph biogeography; however, determining the extent of this
influence in the study region is beyond the scope of this study.

The relationship between primary productivity and diazotroph community composition is more enigmatic.
Cyanobacterial diazotrophs may contribute to primary productivity directly (Capone et al., 2005; Montoya
et al., 2004) or participate in symbioses with other photoautotrophic phytoplankton (Carpenter et al.,
1999; Foster et al., 2007; Harding et al., 2018), while heterotrophic diazotrophs may rely on primary produ-
cers for a supply of organic carbon (Moisander et al., 2012). UCYN-A, which is abundant in this study, is
known to form symbioses with a haptophyte (Thompson et al., 2012). While the limited scope of the mole-
cular data presented here precludes a more detailed assessment of the environmental controls on diazotroph
biogeography, the observed correlations between diazotroph community dissimilarity and temperature, pri-
mary productivity, and NO, support the hypothesis that these factors are important in diazotroph
niche separation.

4. Conclusions

This is the most comprehensive interannual assessment to date of planktonic N, fixation rates from neritic
waters, regions where N, fixation were previously thought to be negligible. Results presented here indicate
that N, fixation rates along the temperate western North Atlantic continental shelf between Cape Hatteras
and the Gulf of Maine are comparable to, or higher than, those observed in most oceanic systems (Figures 1
and 2 and Tables S1-S7) suggesting that coastal N, fixation rates have been seriously underestimated. We
calculate that N, fixation along this small fraction of North Atlantic continental shelf contributed an amount
of new N previously estimated for the entire North Atlantic continental shelf area. Further, many of highest
N, fixation rates were observed at frontal regions where water masses mix and exchange nutrients and
microorganisms. This begs not only for a reassessment of coastal N, fixation worldwide but also for a reex-
amination of the biogeography of diazotrophic groups and their physiological capacities and limitations in
coastal environments where the physical and chemical environments are highly variable on short temporal
and spatial scales. This understanding is paramount as the growth and activity of cyanobacterial diazotrophs
is projected to increase in the future as a result of increases in pCO, and sea surface temperatures (Hutchins
et al., 2009; Paerl & Huisman, 2009; Paerl & Otten, 2013). Diazotrophs, like other marine microbes, appear to
have a range of physiological tolerances and responses to DIN suggesting that water temperature and DIN
concentrations alone do not control diazotroph distribution and activity in the marine environment
(Mulholland et al., 2001, 2012; Knapp, 2012). It is more likely that the biogeography of diazotrophic groups
is controlled by a complex suite of environmental parameters that we do not yet fully understand and that
the realized niches of diazotrophic groups are shaped by competitive interactions as well as environmental
conditions. To better estimate oceanic N inputs via planktonic N, fixation, we require a better understanding
of the biogeography, activity, and physiological capacities of diazotrophic groups with respect to environ-
mental and hydrographic variability.
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