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Figure 1: Online gain in temporal, multimodal, and multivariate prediction uncertainty between prior and posterior. Each cell
can be assumed to have a combination of discrete travel time distributions (i.e., 2, 5, 10, 30min) with different weights.

ABSTRACT
We introduce temporal multimodal multivariate learning, a new
family of decision making models that can indirectly learn and
transfer online information from simultaneous observations of a
probability distribution with more than one peak or more than one
outcome variable from one time stage to another. We approximate
the posterior by sequentially removing additional uncertainties
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across different variables and time, based on data-physics driven cor-
relation, to address a broader class of challenging time-dependent
decision-making problems under uncertainty. Extensive experi-
ments on real-world datasets ( i.e., urban traffic data and hurricane
ensemble forecasting data) demonstrate the superior performance
of the proposed targeted decision-making over the state-of-the-art
baseline prediction methods across various settings.
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1 INTRODUCTION
In recent years, deep reinforcement learning (RL) models have im-
proved the solution quality of online combinatorial optimization
problems [1, 7], yet cannot match the real-world online systems
[16]. Consider a Mars autonomous navigation problem under uncer-
tainty where information sampled from aerial agents mapping large
areas and ground agents observing traversability can be transferred
to other agents for safe and efficient navigation [26]. For the poste-
rior approximation [3] (e.g., Markov decision process) with online
data assimilation [14], we need a new framework to actively sample
useful information. Traditional information metrics like Shannon
Entropy or Kullback-Leibler (KL) Divergence fail to incorporate
future uncertainty with more than one peak probability distribu-
tions [14]. Shannon Entropy [34] cannot distinguish distributions
with multiple weights (e.g., bimodal distributions) because it only
considers raw information gain, treating all information as equally
valuable. KL Divergence [22] introduces a bias toward only one
mode (e.g., Exclusive, Reverse) or toward the mean of the modes
(e.g. Inclusive, Forward) with non-symmetrical measures of infor-
mation gain. Recent computer vision models [11] cannot address
unobserved heterogeneity causing multimodal distributions since
representing the information gain using KL Divergence requires
comparison to an “ideal” distribution. This biases the model toward
searching only for some types of uncertain solutions while ignoring
other potentially more valuable solutions. When the probability
distribution is heavily weighted at either extreme, the system cost
either experience very high true savings or negative true savings.
Those combinations of probability distributions vary across time
and location and evolve as new observations become available.

Our main contribution is the development of a new family of
online predictive decision making models, Temporal Multimodal
Multivariate Learning (TMML), that can indirectly learn and trans-
fer online information from multiple modes of probability distribu-
tions and multiple variables between different time stages, which
can be applied to many routing problems under uncertainty such as
Mars exploration [14], Hurricane sensing [9], and urban routing [?
]. Preliminary remedy [14] partially filled this gap by grouping sim-
ilar types of locations based on their classified output (e.g., sandy or
rocky), used in optimizing vehicle routing to improve the prediction
uncertainty proven to be superior to partially observable Markov
decision processes. Locations with broad bimodal distributions of-
fered the greatest potential delta between the expected and true
savings. We expand this bimodal learning to multimodal learning
and the maximum information gain is accomplished by identifying
the time-dependent similarity between the probability distribution
of variables. With existing routing algorithms, opportunities for
data collection are commonly skipped or missed entirely. A technol-
ogy to collect more valuable observations while carefully spending
system resources will add significant value to the autonomous de-
cisions. The result will be an increased likelihood of encountering
unexpected scientific discoveries, creating new opportunities to
characterize uncertainties, reconciling the desire to explore further

with the desire to explore in-depth, and eliminating the dichotomy
between engineering limitations and scientific discovery.

Cells in the grid of Figure 1 with a similar combination of distri-
butions are clustered together based on the similarity between the
combinations (e.g., 6 cells outlined in black). As users traverse the
map, exploration of a cell in a cluster will remove the travel time
uncertainty of other cells in the same cluster. In other words, ex-
ploring one cell of the cluster will identify which of the two travel
time distributions applies to that explored cell, and to all other
unexplored cells in the cluster. However, each cell has two travel
time distributions with peaks of different heights. Therefore, we
do not update all cells that share a single travel time distribution;
we update cells that have similar combinations of distributions.
This technique can be applied to several real-life applications. For
example, assume that each cell with heterogeneous users presents
a mixture of traffic conditions [27]. An online RL simplifies multi-
modality to a unimodal distribution 𝑋 ∼ N(35, 102) resulting in a
lost opportunity to remove uncertainties in other locations.

Several techniques learn and transfer information gained from
multimodal distribution data in information theory [22, 34] for
global uncertainty removal: grouping similar combinations of distri-
butions, sampling from similar groups and updating posteriors, and
solving probabilistic optimization [1, 3] for online routing. Those
are necessary to optimize the probabilistic global routing problems
based on knowledge learned and transferred in a sequence, and data
is typically obtained from parts and not analyzed as a whole. While
previous research [9, 13, 14] addressed bimodal learning and full un-
certainty removal, we address multimodal learning integrated with
partial information gains from temporal and multivariate learning
applied to urban traffic and hurricane data.

2 MULTIMODAL LEARNING
Reduced uncertainty in bimodal travel time information can be
processed and transferred from one agent to another agent [14]. A
prototype of bimodal uncertainty removal in an 10×10 grid map is
extended to multimodality of each cell through clustering similar
probability distributions for multimodal learning (Figure 2). The
agent is allowed to move in four directions: up, down, left, and right.
Diagonal moves are not allowed. Cells in the grid are numbered row-
wise, starting with zero for the first cell. Grids are used because the
prior state of the map will be defined using image analysis, which
defines the state of a region using pixels of a fixed size. Those 2, 5,
10, and 30 minutes from Figure 1 bimodal is expressed as clusters.
The key statistics for travel time distribution in each cell are based
on lower and upper bounds, with probability 𝑃 (𝑇 ) represented as
real numbers between 0 and 1 in the model [14] in Figure 2 further
extended to incorporate multimodality.

In this study, multimodal learning enhances the scientific and en-
gineering value of autonomous vehicles by finding the best routes
based on the desired level of exploration, risk, and constraints.
In the proposed exploration framework, each grid cell (Figure 2)
contains a unique probabilistic distribution of travel time for for-
mulating the best options to travel with partial, sequential, and
mixture of information gain, with various probability distributions.
An example application is the Machine learning-based Analytics
for Rover Systems (MAARS) [26], where agents analyze images for
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Figure 2: Multimodal extensions to the proposed path
[14], compared against theoretically minimizing the ini-
tial expected travel time (ETT) or the highest probability
classification-based travel time the Max[𝑃 (𝑇 )]. The grid
shows each cell type by number (white) and filled color.

autonomous driving feature detection, and assist scientists by se-
lectively collecting data without interrupting drives. When agents
travel through a grid map, information can be gained by visiting
cells classified with uncertainty, observing the conditions in those
cells, and estimating the true state of other cells and observations
from other agents. Existing work on energy-optimal path planning
[35, 36, 38] assume that energy consumption and generation are
given or immediately derivable from an existing height map. How-
ever, without prediction of the agent’s energy consumption and
generation, these methods are myopic, simplified, and not a real-
istic optimization approach. An agent’s energy consumption and
generation depend on interrelated factors such as terramechanics,
the agent’s dynamics and kinematics, and terrain topography.

3 MULTIVARIATE MULTIMODAL LEARNING
Traditional machine learning frameworks overlook simultaneous
observations of more than one outcome variable in different loca-
tions and times without lowering the prediction errors. Real-life
data, behaviors, and problems (referring to objects, values, and
attributes) are non-independent and non-identically distributed,
whereas most analytical methods assume independent and iden-
tically distributed (IID) random variables. Unfortunately, the in-
terdependent event relationship has been overlooked and future
posterior events have been assumed independent from other events
and systems. The dynamic impact area of a prior event could pre-
dict the probability of posterior events [30, 31]. However, when
frequent minor events are occurring in a sequence, due to high
uncertainty, the literature could not reliably predict the dynamic
spatiotemporal evolution of a mutual relationship between events
[29]. Machine learning with rule extraction [32] partially allevi-
ates Black box issues, but without an effort to reduce uncertainty
by observing a ground truth, the routing solutions are still unreli-
able and intractable. In this paper, those dependencies are partially
addressed by clustering multidimensional correlation data from

multiple variables through deep clustering and when one cluster is
updated, other variable data from the same cluster are also updated.

In our case study, the multivariate clustering applied on hurri-
cane Small Unmanned Aerial Systems (sUAS) observation includes
four variables in each cell: wind speed, temperature, relative hu-
midity, and pressure observed from the boundary layer. Each cell
represents a specific location in the hurricane. Utilizing data manip-
ulation techniques, we transform each variable to a single vector
and combine each of the four vectors to create a multidimensional
data matrix. By aggregating all cells in the map and grouping sim-
ilar types of probability distributions of multiple variables, when
we observe those variables at one location, uncertainties of other
correlated variables at other locations are realized in this study.

4 ONLINE LEARNING FRAMEWORK
Temporal learning addresses the time-dependent realization of un-
certainties of other correlated variables at other locations at other
time stages, when we observe variables at one-time stage. The
online learning framework updates sequential information based
on the rapidly exploring random tree star (RRT*) algorithm. The
RRT* algorithm finds an initial path solution based on an originally
developed utility map of the environment conditioned on some
constraint. As the agent follows this path of connected way-points
(nodes) and makes new observations, the utility map is sequen-
tially updated, generating recourse actions to accommodate the
new information. Specifically, in each time stage, the utilities of
the cells in the map are updated based on observations made at
the agent’s current location. At the first successor node from the
agent’s current location, the updated utility map is used to find a
new node in a defined search region centered at the agent’s current
location. The search regions’ radius is equal to the length of the
edge connecting the current location and the first successor node.

Considering the nodes in this region, we evaluate their utilities
and select the node with the highest utility, replacing the initial
first successor node from the current location. After pruning the
previous edge connection, we then rewire the current location
node to the new node.The new node is also rewired to the current
location’s second successor node. We repeat pruning and rewiring
as the agent moves through the nodes and receives new information
(updated utilities) until it reaches the target location.

Algorithm 1 :TMML-RRT* with Online Recourse

T← InitializeTree()
T← InsertNode(∅,𝑧𝑖𝑛𝑖𝑡 ,T)
for i=0 to i=N do
𝑧𝑟𝑎𝑛𝑑 ← Sample(i)
𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ← NearestTMML(T,𝑧𝑟𝑎𝑛𝑑 )
(𝑧𝑛𝑒𝑤 ,𝑈𝑛𝑒𝑤) ← Steer(𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑧𝑟𝑎𝑛𝑑 )
if NoExceed(𝑧𝑛𝑒𝑤 ) then
𝑧𝑛𝑒𝑎𝑟 ← Near(𝑇, 𝑧𝑛𝑒𝑤 , |𝑉 |)
𝑧𝑚𝑎𝑥 ← ChooseParentTMML(𝑧𝑛𝑒𝑎𝑟 , 𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑧𝑛𝑒𝑤 )
T← InsertNode(𝑧𝑚𝑎𝑥 , 𝑧𝑛𝑒𝑤 ,𝑇 )
T← Rewire(𝑇, 𝑧𝑛𝑒𝑎𝑟 , 𝑧𝑚𝑎𝑥 , 𝑧𝑛𝑒𝑤 )

end if
end for
OptPath← OnlineRecourse(T, 𝑛𝑠 , 𝑛𝑔)
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The path search in Algorithm 1 shows the Nearest function in
TMML-RRT* (NearestTMML) considering the utility at the nearest
node. The NoExceed conditional statement implements constraints.
The ChooseParent function considers the node with maximum
utility within a defined region. The Rewire reevaluates previous
connections from the agent’s start location and extends the new
node to the node that can be accessed through the maximum utility.
This process in Algorithm 1 is repeated until we find the target
location. As shown in the pseudocode (Algorithm 2) in Appendix
C, after the initial path solution (based on the originally developed
utility map) is found, the OnlineRecourse function is applied to find
alternative waypoints (nodes) as the agent follows this path.

As the vehicle traverses its planned path, observations are made
of the environment. Variational Bayesian inference generates a pos-
terior belief given the prior belief of cell type distributions within
each of the clusters. To measure how well variational multino-
mial posterior distribution 𝑞𝜆 (𝑧 |𝑥) approximates the true posterior
𝑝 (𝑧 |𝑥), the KL divergence KL(𝑞𝜆 (𝑧 |𝑥) | |𝑝 (𝑧 |𝑥)) estimates the in-
formation lost minimized with optimal variational parameters 𝜆.
The belief about the properties of different cell type clusters is
updated en route to improve the travel. Clustering is performed
using an expectation maximization algorithm on multinomial mix-
ture models of the cells to identify cells with similar probability
distributions. The likelihood of observing the dataset 𝑃 (Υ |𝛼, 𝛽) for
data Υ and Dirichlet parameters 𝛼 , 𝛽 is the sum of 𝛼𝑘𝑃 (𝑥𝑖 |𝛽𝑘 ) as
observations 𝑖 goes from 1 to 𝑁 and clusters 𝑘 goes from 1 to 𝐾 .
Using Expectation Maximization, the optimal distribution of the
data over 𝐾 clusters is determined by maximizing the lower bound
of the log of the likelihood. The optimal cluster index minimizes the
Bayesian Information Criterion as the difference between 𝐷 ln (𝑁 )
and 2 ln (𝐿̂) where 𝐷 is the number of parameters, 𝑁 is the total
number of observations, and 𝐿̂ is the likelihood of the model.
𝐷𝐾𝐿 quantifies the information gained by revising belief from

the prior probability distribution Q to the posterior probability dis-
tribution P. The mutual information 𝐼 (X;Y) between two discrete
random variables X and Y is 𝐼 (X;Y) = 𝐷𝐾𝐿 (𝑃 (X,Y) | |𝑃X ⊗ 𝑃Y )
where 𝑃 (X,Y) is the joint probability mass function and 𝑃X and 𝑃Y
are the marginal probability mass functions of the random varaibles
X and Y. If X and Y are independent, then the joint distribution
𝑃 (X,Y) will be identical to the product of the marginal distributions,
implying that the mutual information is zero in given equation (1).

𝐼 (X;𝑌 ) =
∑︁
𝑦∈Y

∑︁
x∈X

𝑝 (X,Y) (x, y)𝑙𝑜𝑔
( 𝑝 (X,Y) (x, y)
𝑝X (x)𝑝Y (y)

)
(1)

This provides a measure of how much uncertainty is reduced
for one random variable by knowing information about the other.
Mutual information can also be formulated as an expectation value
of the KL Divergence, as shown in equation (2).

𝐼 (X;Y) = EY
[
𝐷𝐾𝐿 (𝑝X |Y | |𝑝X)

]
(2)

5 TEMPORAL MULTIMODAL LEARNING
5.1 Learning urban traffic
Daily commutes can be unexpectedly protracted by road closures,
accidents, and inclement weather. The quick restoration of traffic
flow through the coordinated responses of emergency vehicles may

help alleviate the traffic delays impacting the road network [8].
However, the delays, which can exceed users’ planned commut-
ing time, can cause missed meetings, canceled appointments, and
child care fees, accumulating costs. The majority of users react
similarly to the unforeseen traffic delays and may unknowingly,
collectively transfer congestion from one route to another [2]. Cur-
rent navigation systems (e.g., Google Maps) are not customized
to users’ tolerance for unexpected delays therefore they cannot
predict optimal routes [23]. Because the network is dynamic, the
route suggestion users receive at the outset of their commute may
not be optimal when they are on the road [6]. In the literature, other
traffic sensing technologies commonly fail to provide network-scale
predictions under unexpected conditions. For example, current dy-
namic route choice models [17] consider that the link travel time
realization is only based on nearby links. The multimodal multi-
variate uncertainty caused by unobserved varying traffic patterns
through the day has not been considered.

To accommodate this, recent Google Deep-mind research has
been using many factors and real-time updates of traffic data for
more accurate prediction of travel time. Anticipatory routing guid-
ance [24] is effective in knowledge transfer, however, ignores the
potential information gain from probability density functions with
more than one peak. Consider a network with a grid laid on top
in Figure 1, where each cell represents a small geographical re-
gion. To find an optimal route from an origin cell to a destination,
forecasting the condition of intermediate cells is critical. Routing
literature [10] did not use a location’s observed data to forecast
conditions at distant non-contiguous locations’ unobserved data.
We aggregate the data from all cells in the grid and cluster cells
that have similar combinations of probability distributions. When
one cell of a cluster is explored, the information gained from the
explored cell can partially remove uncertainty about the conditions
in distant non-contiguous unexplored cells of the same cluster.

Multimodal traffic learning. Assume we know a freeway link
A historically takes 2-minutes without congestion but it may take 8-
minutes due to an unexpected event (e.g., incidents). We can cluster
A and A′ in the same correlated group assuming the bimodal travel
distributions for both links are similar. Literature ignores three
benefits of sending a platoon of vehicles to A instead of B shown
at the bottom in Figure 3: For a scenario that turned out to be 2-
minutes due to the fast clearance of the incident, 1) we can update
the predicted travel time on this link A so other drivers can switch
either their departure time or route to take this 2-minutes shortcut,
2) we can update travel time on other links (e.g., A′) having the
same type of probability distributions. By knowing that the total
travel time of a route is 4-minutes, we can send more vehicles
to this route and relieve other route congestion that turned out
to be 8-minutes due to the long clearance of the incident, 3) we
update travel time on other links (e.g., A′) having the same type of
probability distributions. By knowing that the total travel time of a
route AA′ is 16-minutes, we can inform fewer vehicles to use this
route, redistribute traffic to other routes (i.e., BC) having shorter
travel times.While the current routing literature realize only nearby
links, the realization of multimodal travel time distributions that
are derived from real-world data have not been studied.

However, recent studies [18, 39] have shown that travel time dis-
tributions on freeways have two or more modes as distinct peaks in
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Figure 3: Temporal Multimodal Learning (TML) from corre-
lation of time-varying bimodal distributions between links.

the probability density function due to the mixes of driving patterns
and vehicle types. This multimodal (or bimodal) distribution exists
on arterial roads, where a vehicle passing a signal at the end of the
green would experience quite different travel time than the vehicle
following behind it that must make a stop at the red, although they
traveled next to each other. Without knowing the future traffic with
confidence, the traditional choice theory considers the bounded
rationality [12, 19–21] of the majority of agents taking a detour to
link B, which causes congestion on B and nearby roads.

Temporal multimodal traffic learning. In Figure 3, A has a
bimodal distribution with a mode at 8 and 2 between time stages
1 to 5, switching to a bimodal distribution with a mode at 6 and 4
at time stage 6. For departing at time stage 1, the time-invariant
method adds travel time together either the high or low modes of
link and route AA′ travel time to be either 8+8 or 2+2. The time-
variant method accounts for the time needed to traverse A either
8 or 2 minutes and re-evaluates the travel time at A′ based on the
time of entering A′, may encourage a detour to Link C in case of 8
minutes of realization. We assume that the state change is given
based on event models [29].

The previous examples assume that the primary factor contribut-
ing to travel time variation on a given link is the time of day. The
focus of this study is to use travel time correlation information to
remove uncertainty in within-day travel. Travel time may depend
on other factors such as day-of-week, weather patterns during the
day, and special events in the region like post-game-day traffic near
a sports stadium. If data on these other variables are made available,
the same temporal learning process can be extended (see Section 6

for temporal learning under the presence of multiple variables of
interest).

5.2 Improving KF prediction
Prediction uncertainty in travel time is improved by considering
TML on real-world traffic data. Let 𝐶 be the set of all links, traffic
message channels (TMCs), across the network and 𝑇 be a finite set
of discrete-time intervals over the morning peak period [28, 29]. We
consider 39 TMCs (|𝐶 | = 39) on Interstate 540 in Raleigh, NC during
24 ten-minute time intervals from 8:00 am to 12 noon (|𝑇 | = 24).
Probe-vehicle-based speed for each TMC was obtained from the
National Performance Management Research Data Set (NPRMDS).

NPRMDS contains the travel time and speed information for
each TMC for each time interval across different days over the
course of eight months. Due to the day-to-day traffic randomness,
the traffic speed on TMC 𝑐 ∈ 𝐶 for time interval 𝑡 ∈ 𝑇 , denoted
by 𝑣𝑡𝑐 , is a random variable. As argued in the literature [18, 27,
39], 𝑣𝑡𝑐 is likely to have a probability distribution with multiple
modes (multimodal distribution). We learn and predict 𝑣𝑡𝑐 within
day by analyzing the spatiotemporal correlations between random
variables 𝑣𝑡𝑐 for all (𝑐, 𝑡) ∈ 𝐶 × 𝑇 . By clustering all 𝑣𝑡𝑐 variables,
we identify spatiotemporal patterns and different combinations of
traffic speed distributions with following steps:
• Analyze the spatiotemporal probability distribution of vari-
ables 𝑣𝑡𝑐 by aggregating variation of traffic speed for a specific
time interval across eight months. For this case study, we
assume that the only factors influencing travel time are the
location of TMC (𝑐) and time-of-day interval (𝑡 ).
• Clustering is performed across all 𝐶 and 𝑇 using minimum
message length criteria to identify TMC’s with similar prob-
ability distributions [37]. Clustering algorithm will automat-
ically discover the optimal number of clusters.

Kalman Filtering (KF) Prediction 𝑣𝑡𝑐 .We model the evolution
of random variable 𝑣𝑡𝑐 from one 10 minute interval to the next
interval within-day with and without information gain using KF.
The data of 𝑣𝑡𝑐 acquired from TMCs have inherent noise due to
sensor errors. Employing KF can produce an accurate estimate
of 𝑣𝑡𝑐 using noisy measurements over the period (24 intervals of
time). In this paper, the traditional KF is expanded to consider the
information gain from the clustering step. We model evolution of
variable 𝑣𝑡𝑐 from the first time interval 𝑡 = 8 − 8 : 10𝑎𝑚 to the last
interval 𝑡 = 11 : 50 − 12𝑝𝑚 within a day. Figure 4 shows the KF
process which is formulated in the following equations.

Prediction step. Projection of the state at time 𝑡 using the
prediction at previous time 𝑡 − 1 is given by:

𝑥−𝑡 = 𝐴𝑥+𝑡−1 + 𝐵𝜇𝑡 (3)
where,
• 𝑥+

𝑡−1 is the state vector of the process at time 𝑡−1. In this case,

state vector considered is
[

speed
acceleration

]
, where, acceleration

is defined as the rate of change of speed of TMC with respect
to previous time period.
• Matrix 𝐴 is the state transition matrix of the process from
the state at 𝑡 − 1 to state at 𝑡 and is assumed stationary over

time. That is, 𝐴 =

[
1 𝑑𝑡

0 1

]
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Clustering by Multinomial Mixture Expectation Maximization 
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Figure 4: Two steps in KF-TML: In the predict step, a model
is employed to predict the chosen state variable at next time
interval 𝑡 +1 using measurement from previous time interval
(𝑘). In the update step, the predicted state is corrected using
the noisy measurements at 𝑡 + 1.

• 𝑑𝑡 = 1 according to definition of acceleration defined above.
• Matrix 𝐵 is a matrix of all zeros as there is no known external
control input factor that affects speed measurement.
• 𝑃 is the error covariance matrix. It is interpreted as the error
in estimation according to filter.

• 𝑄 is the process noise defined as 𝑄 =

[
0.04 0
0 1

]
• We assumed the speed with a variance of 0.04 in prediction
step.

Projection of error covariance of state

𝑃−𝑡 = 𝑃+𝑡−1𝐴
𝑇 +𝑄 (4)

Correction step. In this step, we determine the Kalman Gain at
time 𝑡 (denoted by 𝐾𝑡 ) which can be interpreted as,

Kalman gain =
Uncertainty in prediction

Uncertainty in prediction + measurements
. (5)

We can write,

𝐾𝑡 = 𝑃
−
𝑡 𝐻

𝑇 (𝐻𝑃−𝑡 𝐻𝑇 + 𝑅)−1 (6)

where, 𝐻 is the connection matrix between the state vector and
the measurement vector and 𝑅 is the data precision matrix. In our
case, 𝐻 =

[
1 0

]
.

In the next step of KF, speed prediction is updated using obser-
vations 𝑍𝑡 . In case of KF-no TML, 𝑍𝑡 are the speed observations on
a given day while in case of KF-TML, 𝑍𝑡 are mean and variance of
historical speed data.

𝑥+𝑡 = 𝑥−𝑡 + 𝐾𝑡 (𝑍𝑡 − 𝐻𝑥−𝑡 ) (7)

Error covariance matrix is also updated in this step using the
Kalman gain.

𝑃+𝑡 = (𝐼 − 𝐾𝑡𝐻 )𝑃−𝑡 (8)

KF-TML has an additional step as the speed prediction update
with data 𝑍+𝑡 obtained from information gain of correlated links.

𝑥++𝑡 = 𝑥+𝑡 + 𝐾+𝑡 (𝑍+𝑡 − 𝐻𝑥+𝑡 ) (9)

This step also updates the error covariance matrix.

𝑃++𝑡 = (𝐼 − 𝐾+𝑡 𝐻 )𝑃+𝑡 (10)

The hat operator indicates an estimate of a variable. The super-
scripts -, + and ++ denote predicted (prior), updated 1 (posterior 1)
and updated 2 (posterior 2) estimates, respectively. The posterior 1
will be the final prediction in KF-no TML while posterior 2 will be
final outcome in KF-TML.

During the update step, observations available from the corre-
lated links from previous time intervals are considered. The mean
and variance of speeds of all correlated links are used as the new
observation in the update step. Therefore, traditional KF has only
one update step but in this paper, the algorithm is modified to have
two updates, one with mean and variance of historical data of 8
months and the other with mean and variance of correlated speed
data obtained from the clustering step.

The (1, 1) element in matrix P denotes the variance in estimation
of speed. Percentage change in 𝑃 (1, 1) with information gain with
respect to 𝑃 (1, 1) without information gain is calculated.

Δ𝑃 =
𝑃 (1, 1)without info gain − 𝑃 (1, 1)with info gain

𝑃 (1, 1)without info gain
∗ 100 (11)

Results. The performance of KF with TML is compared against
the benchmark. Traditional KF without TML ignores the correlation
information where the observation is simply the observed speed
from the sensor on a given day, and KF with TML is modified to
include the mean observation of speed from other TMCs and previ-
ous time-periods that are within the same cluster as the given TMC
and time-period. Figure 5 shows that the KF prediction with TML
has fewer errors compared to the KF prediction without TML. Fig-
ure 10 in Appendix B shows the percentage change in uncertainty
of predictions when TML is considered. A significant reduction
in uncertainty indicates more confidence in the predictions with
TML. In KF without TML, the update step uses measurements with
noise at time 𝑡 to get accurate predictions at time step 𝑡 . In KF
with TML, we improve the prediction performance of traditional
KF by using the correlated observations from previous periods and
it helps to achieve the estimation of speed at 𝑡 on the previous time
step, 𝑡 − 1. This improved method is useful in getting more accurate
predictions ahead of time.

6 TEMPORAL MULTIVARIATE MULTIMODAL
LEARNING

6.1 Learning storm atmosphere
With observations from sUAS, NOAA’s National Hurricane Center
can better measure critical variables and parameters in the bound-
ary layers of hurricanes [5]. The accuracy of the data collected by
the sUAS agreed well with that of the manned measurement, with
the sUAS sometimes capturing more variability than the manned
measurement [4]. However, the predefined navigation procedures
do not necessarily consider how data gathered from a flight path im-
proves the hurricane forecasting. The criteria for location selection
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Figure 5: Speed predictions with and without TML and corre-
sponding observations

was “difficult to observe in sufficient detail by remote sensing”.We find
the “optimal routes considering importance of observations” gained
from the data in a precise target location among high-dimensional
spaces. We analyze how online updating from sUAS collected mete-
orological data would benefit hurricane intensity forecasting con-
sidering the temporal variation in the uncertainty of hurricane
prediction. The temporal multivariate learning and in-situ data
collections can significantly improve understanding of hurricane
movement, relevant dynamics, and track prediction with the same
effort and less risk.

TMML in hurricane forecasting. To generate the uncertainty
distribution for HurricaneHarvey, conventional in situ observations
(e.g., Dropsondes) and all-sky satellite radiance from GOES-16 were
assimilated in a state-of-the-art data assimilation system (ensemble
KF) and built around the Advanced Weather Research and Fore-
casting Model (WRF-ARW) and the Community Radiative Transfer
Model (CRTM) to provide hourly temporal resolution forecast of
Hurricanes [25]. Indirect learning will overcome possible limita-
tions in observing only one reliable sample variable in a cell out
of many sensor payloads [33]. The temporal multivariate cluster
groups cells with a similar combination of distribution of multi-
ple variables in each cell: e.g., temperature (T), pressure (P), wind
speed(W), relative humidity (RH) (Figure 6). Once we have an ob-
servation of one variable, we update posterior of other variables
at the same location/other locations at the same time/other time
stages with the same cluster as the observed location.

6.2 Improving sUAS routing
Once the first sUAS is launched from a tube attached to a P-3
hurricane hunter aircraft and controlled remotely from the airplane
to be deployed to the lower layer, the benefit of the online update
of the information presents an increase in accuracy relative to the
initial hurricane prediction (Figure 7). The overall improvement in
prediction uncertainty after observations are made along a path
is computed as the difference between the sum of measurement
variances before and after observations.

The utility map for the agent-guided observations of the hurri-
cane environment is constituted from the standard deviation and
multivariate cluster entropy between the four state variables: pres-
sure, temperature, wind speed, and relative humidity. These compo-
nents are normalized to ensure a consistent scale. First, the normal-
ized standard deviation 𝜎̂ (𝑥,𝑗) of the measurement for these state

C
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H P T W
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H P T W
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Figure 6: The clustered temporal multivariate distribution of
four variables across all time stages (4 × 12 dimensional). For
example, one observation of temperature within cluster 1 at
time stage 1 are used in removing prediction uncertainties
of humidity in cluster 2 at time stage 3.

D
D

D

Maximum improvement in cyclone forecasting 

Figure 7: Active sUAS In-situ Sensing

variables 𝑥 ∈ 𝑋 are linearly combined as
∑
𝑥 ∈𝑋 𝜎̂ (𝑥,𝑗) to quantify

the overall standard deviation 𝜎 ( 𝑗) in each cell of the hurricane
space. Second, the entropy𝐻 (𝑥, 𝑛𝑡𝑦𝑝𝑒 ) for each multivariate cluster
distribution is computed as

𝐻 (x, 𝑛𝑡𝑦𝑝𝑒 ) = −
𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

𝑃
(
x, 𝑛𝑡𝑦𝑝𝑒 (𝑘), 𝑡

)
log2 𝑃

(
x, 𝑛𝑡𝑦𝑝𝑒 (𝑘), 𝑡

)
(12)

where 𝑃
(
x, 𝑛𝑡𝑦𝑝𝑒 (𝑘), 𝑡

)
is probability of category 𝑘 ∈ 𝐾 in cell 𝑗 of

cluster 𝑛𝑡𝑦𝑝𝑒 at time 𝑡 and x is an 𝑁 dimensional vector of the state
variables. For illustration, in a 12-hour forecast window for Hurri-
cane Harvey, cells with similar characteristics were grouped into 11
clusters as different combinations with multiple variables, where
the optimal number of clusters and distribution parameters in each
cluster were estimated to maximize posterior probability (Figure
8). Variational Bayesian inference approximates the true posterior
based on the KL divergence minimizing the information lost with
optimal variational parameters. In Appendix A, the estimation of
expected observation and posterior estimate of the variances after
observations by the sUAS is presented.
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ObservationPrior Belief of 11 Clusters across 4 Variables Posterior Belief
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t

Improve higher peak per cluster

Figure 8: Posterior update after agents A & B depart from red and observe 64 cells out of 2500. As the probability distribution for
each variable for each cluster in the plot is narrower, it represents less uncertainty. Variational Bayesian inference generates a
posterior belief given the prior belief of cell-type distributions. As observations made along the route, particularly the cluster 2,
6, and 9 observations are made directly and indirectly would be further reduced uncertainty and present narrower probability
distribution.
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Figure 9: Safe and efficient sUAS path solution by TMML-
RRT* and MDM on centered horizontal cross-sections for
Hurricane Harvey at a 1.1-km level.

Results. Although unobserved non-contiguous cells may not
share any inherent correlation with locally observed cells, classifi-
cation errors are found be correlated with certain features found
in different locations. By clustering cells with similar distributions
(e.g., predicted wind speed) and correcting those errors as more
evidence becomes available from sUAS observations, the reliability
of the prediction was greatly improved (Figure 9). Anticipatory
sUAS routing lowered the overall energy usage, and maximized
the reduction of forecasting error by exploring and sampling unob-
served cells along the path to a target location. This new method
significantly improved the combined quality of observations (pres-
sure, temperature, and wind speed) against the Minimum Distance
Method (MDM) in Hurricane Harvey [9]. In this paper, the multi-
stage online decisions are made by combining the benefits of direct
sensing through the sensitivity map and the additional benefits

from indirect learning through the correlation structure consider-
ing three components: 1) temporal learning, 2) multimodal learning
from one observed geographical location to other similar locations,
3) deep multivariate learning by grouping similar covariance of
all four variables rather than estimating correlation of each pair.
Compared against unimodal univariate learning, the combination
of all three components presents a larger reduction in prediction
uncertainty.

Table 1: Improvement in Prediction Uncertainty

MDM = 2.36% Non temporal Temp.
Unimodal Multimodal

Correlation Univariate 2.66% 4.34% -
Multivariate 3.28% 6.25% 11.26%

Deep multivariate - 7.37% 13.45%

The average improvement in predicted multimodal measurement
was significantly higher when TMML were considered. MDM [9]
ignores those two properties by averaging to reduce the dimension
of the data, but these results show that while the dimension may
have increased, uncertainty reduction in temporal correlation may
have reduced the size of the deterministic problem.

7 CONCLUSION
With the Temporal Multimodal Multivariate Learning (TMML), we
have introduced a new family of RL models that can indirectly
learn and transfer information from multiple modes of probabil-
ity distributions of multiple data variables in different time stages.
These models can solve challenging tasks where the uncertainty
is revealed in a sequence by grouping samples within similar dis-
tribution types and inferring the posterior based on expected ob-
servations. The effectiveness of TMML has been demonstrated on
real-world autonomous navigation in urban transportation andHur-
ricane. TMML opens appealing research opportunities in the study
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of information-theoretic decision making that exhibit nontrivial
indirect learning from spatiotemporal correlation.

8 ACKNOWLEDGMENTS
Part of the research work was carried out at the NASA Jet Propul-
sion Laboratory (JPL), California Institute of Technology, under
a contract with the National Aeronautics and Space Administra-
tion (NASA) [80NM0018D0004]. Funding for this research was
provided by NSF [1910397, 2106989], NASA JPL [RSA 1625294,
1646362, 1659540], and NCDOT [TCE2020-01]. The authors thank
JPL Education Office for providing internships and faculty visiting
opportunities to conduct this research and Dr. Joe Cione for giving
us valuable insight into past, current, and future sUAS missions
and key findings. The data used for these analyses are available at:
https://figshare.com/s/90f31f60e5821dae90bd

REFERENCES
[1] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio.

2017. Neural Combinatorial Optimization with Reinforcement Learning. In 5th
International Conference on Learning Representations (ICLR 2017).

[2] M. Ben-Akiva, D. McFadden, and T. et al. Gärling. 1999. Extended Framework
for Modeling Choice Behavior. Marketing Letters 10 (1999), 187–203.

[3] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. 2021. Machine learning for
combinatorial optimization: A methodological tour d’horizon. European Journal
of Operational Research 290, 2 (2021), 405–421.

[4] Joseph J Cione, George H Bryan, Ronald Dobosy, Jun A Zhang, Gijs de Boer,
Altug Aksoy, Joshua B Wadler, Evan A Kalina, Brittany A Dahl, Kelly Ryan, et al.
2020. Eye of the storm: observing hurricanes with a small unmanned aircraft
system. Bulletin of the American Meteorological Society 101, 2 (2020).

[5] Joseph J Cione, EA Kalina, EWUhlhorn, AM Farber, and B Damiano. 2016. Coyote
unmanned aircraft system observations in Hurricane Edouard (2014). Earth and
Space Science 3, 9 (2016), 370–380.

[6] Rutger Claes, Tom Holvoet, and Danny Weyns. 2011. A Decentralized Approach
for Anticipatory Vehicle Routing Using Delegate Multiagent Systems. IEEE
Transactions on Intelligent Transportation Systems 12, 2 (2011), 364–373.

[7] Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. 2017.
Learning Combinatorial Optimization Algorithms over Graphs. In Proceedings of
the 31st International Conference on Neural Information Processing Systems (Long
Beach, California, USA) (NIPS’17). Curran Associates Inc., Red Hook, NY, USA,
6351–6361.

[8] Justice Darko, Larkin Folsom, Niharika Deshpande, and Hyoshin Park. 2021.
Distributed Constraint Optimization Problem for Coordinated Response of Un-
manned Aerial Vehicles and Ground Vehicles. In 2021 55th Annual Conference on
Information Sciences and Systems (CISS). IEEE, 1–6.

[9] Justice Darko, Larkin Folsom, Hyoshin Park, Masashi Minamide, Masahiro Ono,
and Hui Su. 2022. A Sampling-Based Path Planning Algorithm for Improv-
ing Observations in Tropical Cyclones. Earth and Space Science 9, 1 (2022),
e2020EA001498. https://doi.org/10.1029/2020EA001498

[10] Justice Darko, Larkin Folsom, Nigel Pugh, Hyoshin Park, Khadijeh Shirzad, Justin
Owens, and Andrew Miller. 2022. Adaptive personalized routing for vulnerable
road users. IET Intelligent Transport Systems (2022).

[11] Mithun Das Gupta, Srinidhi Srinivasa, J. Madhukara, and Meryl Antony. 2015.
KL Divergence based Agglomerative Clustering for Automated Vitiligo Grading.
In IEEE Computer Vision and Pattern Recognition.

[12] Xuan Di, Henry X. Liu, and Xuegang Jeff Ban. 2016. Second best toll pricing
within the framework of bounded rationality. Transportation Research Part B:
Methodological 83 (2016), 74–90. https://doi.org/10.1016/j.trb.2015.11.002

[13] Larkin Folsom. 2021. Information-Theoretic Dynamic Decision Making of
Multiple Agents Under Extreme Uncertain Conditions, Dissertation, Compu-
tational Data Science and Engineering, North Carolina A and T State Univer-
sity. https://www.proquest.com/openview/b141c77418b28498481750a282235211/
1?pq-origsite=gscholar&cbl=18750&diss=y

[14] Larkin Folsom, Masahiro Ono, Kyohei Otsu, and Hyoshin Park. 2021. Scalable
Information-Theoretic Path Planning for a Rover-Helicopter Team in Uncertain
Environments, 18(2): 1-16. International Journal of Advanced Robotic Systems
(2021).

[15] ]folsomdynamic Larkin Folsom, Hyoshin Park, and Venktesh Pandey. [n. d.].
Dynamic Routing of Heterogeneous Users After Traffic Disruptions under a
Mixed Information Framework. Frontiers in Future Transportation ([n. d.]), 11.

[16] Jason Gauci, Edoardo Conti, Yitao Liang, Kittipat Virochsiri, Yuchen He, Zachary
Kaden, Vivek Narayanan, Xiaohui Ye, Zhengxing Chen, and Scott Fujimoto. 2019.

Horizon: Facebook’s Open Source Applied Reinforcement Learning Platform. In
Workshop in the 36 th International Conference on Machine Learning (ICML), Long
Beach, California, USA.

[17] Michel Gendreau, Gianpaolo Ghiani, and Emanuela Guerriero. 2015. Time-
dependent routing problems: A review. Computers & operations research 64
(2015), 189–197.

[18] Feng Guo, Hesham Rakha, and Sangjun Park. 2010. Multistate Model for Travel
Time Reliability. Transportation Research Record 2188, 1 (2010), 46–54.

[19] Xiaolei Guo. 2013. Toll sequence operation to realize target flow pattern under
bounded rationality. Transportation Research Part B: Methodological 56 (2013),
203–216. http://www.sciencedirect.com/science/article/pii/S0191261513001422

[20] Ke Han, Wai Yuen Szeto, and Terry L. Friesz. 2015. Formulation, existence,
and computation of boundedly rational dynamic user equilibrium with fixed or
endogenous user tolerance. Transportation Research Part B: Methodological 79
(2015), 16–49. https://doi.org/10.1016/j.trb.2015.05.002

[21] Qi Han and Harry Timmermans. 2006. Interactive Learning in Transportation
Networks with Uncertainty, Bounded Rationality, and Strategic Choice Behav-
ior: Quantal Response Model. Transportation Research Record: Journal of the
Transportation Research Board 1964 (2006), 27–34.

[22] Solomon Kullback and Richard A. Leibler. 1951. On Information and Sufficiency.
The Annals of Mathematical Statistics 22, 1 (1951), 79–86.

[23] Jane Macfarlane. 2019. When Apps Rule the Road: Your Navigation App Is
Making Traffic Unmanageable. IEEE Spectrum (2019).

[24] Niharika Mahajan, Andreas Hegyi, Serge P. Hoogendoorn, and Bart van Arem.
2019. Design analysis of a decentralized equilibrium-routing strategy for intelli-
gent vehicles. Transportation Research Part C: Emerging Technologies 103 (2019),
308–327. https://doi.org/10.1016/j.trc.2019.03.028

[25] Masashi Minamide, Fuqing Zhang, and Eugene E. Clothiaux. 2020. Nonlinear
Forecast Error Growth of Rapidly Intensifying Hurricane Harvey (2017) Exam-
ined through Convection-Permitting Ensemble Assimilation of GOES-16 All-Sky
Radiances. Journal of the Atmospheric Sciences 77, 12 (2020), 4277 – 4296.

[26] Masahiro Ono, Brandon Rothrock, Kyohei Otsu, Shoya Higa, Yumi Iwashita,
Annie Didier, Tanvir Islam, Christopher Laporte, Vivian Sun, Kathryn Stack, Jacek
Sawoniewicz, Shreyansh Daftry, Virisha Timmaraju, Sami Sahnoune, Chris A.
Mattmann, Olivier Lamarre, Sourish Ghosh, Dicong Qiu, Shunichiro Nomura,
Hemanth Sarabu, Gabrielle Hedrick, Larkin Folsom, Sean Suehr, and Hyoshin
Park. 2020. MAARS: Machine learning-based Analytics for Rover Systems. In
IEEE Aerospace Conference.

[27] Byung-Jung Park, Yunlong Zhang, and Dominique Lord. 2010. Bayesian mixture
modeling approach to account for heterogeneity in speed data. Transportation
Research Part B: Methodological 44, 5 (2010), 662–673.

[28] Hyoshin Park and Ali Haghani. 2015. Optimal Number and Location of Bluetooth
Sensors Considering Stochastic Travel Time Prediction. Transportation Research
Part C: Emerging Technologies 55 (2015), 203–216.

[29] Hyoshin Park and Ali Haghani. 2016. Real-time prediction of secondary incident
occurrences using vehicle probe data. Transportation Research Part C: Emerging
Technologies 70 (2016), 69 – 85.

[30] H. Park and A. Haghani. 2016. Stochastic Capacity Adjustment Considering
Secondary Incidents. IEEE Transactions on Intelligent Transportation Systems 17,
10 (2016), 2843–2853.

[31] Hyoshin Park, Ali Haghani, Siby Samuel, and Michael A. Knodler. 2018. Real-
time prediction and avoidance of secondary crashes under unexpected traffic
congestion. Accident Analysis & Prevention 112 (2018), 39–49.

[32] Hyoshin Park, Ali Haghani, and Xin Zhang. 2016. Interpretation of Bayesian
neural networks for predicting the duration of detected incidents. Journal of
Intelligent Transportation Systems 20, 4 (2016), 385–400.

[33] Jonathan Poterjoy and Fuqing Zhang. 2011. Dynamics and structure of forecast
error covariance in the core of a developing hurricane. Journal of the atmospheric
sciences 68, 8 (2011), 1586–1606.

[34] Claude Elwood Shannon and Warren Weaver. 1949. The Mathematical Theory of
Communication. Urbana, The University of Illinois Press. 1–117 pages.

[35] M. Sutoh, M. Otsuki, S. Wakabayashi, T. Hoshino, and T. Hashimoto. 2015. The
Right Path: Comprehensive Path Planning for Lunar Exploration Rovers. IEEE
Robotics Automation Magazine 22, 1 (March 2015), 22–33.

[36] Paul Tompkins, Anthony Stentz, and David Wettergreen. 2006. Mission-level
path planning and re-planning for rover exploration. Robotics and Autonomous
Systems 54 (2006), 174–183.

[37] Chris S. Wallace and David L. Dowe. 1997. MMLmixture modelling of multi-state,
Poisson, von Mises circular and Gaussian distributions. (1997).

[38] David Wettergreen, Paul Tompkins, Chris Urmson, Michael Wagner, and William
Whittaker. 2005. Sun-Synchronous Robotic Exploration: Technical Description
and Field Experimentation. The International Journal of Robotics Research 24, 1
(2005), 3–30.

[39] Fangfang Zheng and Henk Van Zuylen. 2010. Uncertainty and Predictability
of Urban Link Travel Time: Delay Distribution–Based Analysis. Transportation
Research Record 2192, 1 (2010), 136–146.

 

3730

https://figshare.com/s/90f31f60e5821dae90bd
https://doi.org/10.1029/2020EA001498
https://doi.org/10.1016/j.trb.2015.11.002
https://www.proquest.com/openview/b141c77418b28498481750a282235211/1?pq-origsite=gscholar&cbl=18750&diss=y
https://www.proquest.com/openview/b141c77418b28498481750a282235211/1?pq-origsite=gscholar&cbl=18750&diss=y
http://www.sciencedirect.com/science/article/pii/S0191261513001422
https://doi.org/10.1016/j.trb.2015.05.002
https://doi.org/10.1016/j.trc.2019.03.028


KDD ’22, August 14–18, 2022, Washington DC Hyoshin Park, et al.

A POSTERIOR APPROXIMATION
We combine observations and prior data with the importance of
information. The sequence of observations are assimilated with the
prior predicted measurements to provide the best estimate (pos-
terior) of the measurements. The multivariate measurements are
represented as grid-point values with background prior information
at location 𝑖:

𝑀Pred(x,𝑖) + 𝜎2Pred(x,𝑖) , (13)
and after observation at location 𝑖:

𝑀Obs(x,𝑖) + 𝜎2Obs(x,𝑖) , (14)
where 𝑀Pred(x,𝑖) is the mean predicted measurement at location
𝑖 , 𝜎2Pred(x,𝑖) is the variance of predicted measurement at location 𝑖 ,
𝑀Obs(x,𝑖) is the sUAS observation at location 𝑖 , 𝜎2Obs(x,𝑖) variance
of sUAS observation at location 𝑖 . The variance 𝜎2Obs(x,𝑖) represents
the imperfections of observations made by sUAS sensors. Ourmodel
assumes that this variance is known apriori based on the type of
sensors used. The best estimate of the measurement of variable 𝑥
at location 𝑖 is written as:

𝑀best estimate(x,𝑖) = (1 − 𝛽)𝑀Pred(𝑥,𝑖) + 𝛽𝑀Obs(x,𝑖) . (15)

𝛽 is the weight between the predicted measurements and obser-
vation. The best estimate of weight considers the variance of the
predicted measurement and observation, written as:

𝛽 =
𝜎2Pred(x,𝑖)

𝜎2Pred(x,𝑖) + 𝜎
2
Obs(x,𝑖)

. (16)

The variance of the best estimate of measurement for variable x at
location 𝑖 is less than that of either the prediction or the observation:

𝜎2best estimate(x,𝑖) = (1 − 𝛽)𝜎
2
Pred(x,𝑖) . (17)

To account for the effect of an influence region around each obser-
vation point, we introduce a weighting function 𝝎 (𝒊, 𝒋), to update
the best estimates of the variance at each grid locations 𝑗 in the
vicinity of observation point 𝑖 written as:

𝝎 (𝒊, 𝒋) = max

(
0,
𝑅2 − 𝑑2

𝑖, 𝑗

𝑅2 + 𝑑2
𝑖, 𝑗

)
(18)

where 𝑑𝑖, 𝑗 is a measure of the distance between points 𝑖 and 𝑗 .
The weighting function 𝝎 (𝒊, 𝒋) equals to one if the grid point 𝑗 is
collocated with observation 𝑖 . It is a deceasing function of distance
which is zero if 𝑑𝑖, 𝑗 ≥ 𝑅. 𝑅 (“the influence region or radius”) is
a user defined constant beyond which the observations have no
weight. The modified best estimate of the variance at each grid
point location 𝑗 can now be written as:

𝜎2best estimate(x, 𝑗) = (1 − 𝛽 ∗ 𝝎 (𝒊, 𝒋))𝜎2Pred(x, 𝑗) . (19)

Sequential learning updates a cells entropy and in extension the
utilities each time an observation is made in other cells belonging
to the same cluster. We introduce a weight 𝜔 (𝑥, 𝑜𝑛𝑡𝑦𝑝𝑒 ) (decreasing
function of sample size 𝑜𝑛𝑡𝑦𝑝𝑒 ) that updates the entropy𝐻 (𝑥, 𝑛𝑡𝑦𝑝𝑒 )
as observation of cells belonging to the same cluster type are made.
Since there is high confidence in themeasurement in cells belonging

to clusters with low entropy, we exploit those low entropy cluster
types through a few sampling of their member cells. A posterior
update will be applied to the variance of all similar type cells in
such scenarios.

Conversely, there is low confidence in the measurement in cells
belonging to clusters with high entropy. Therefore, we explore
the high entropy cluster types through a large sampling of their
member cells. With enough sampling of member cells, we can
reduce the entropy to a set threshold and apply a posterior update
to measurements in its member cells. The sequential learning in
environments learn the optimal sample size and update as more
observations are obtained. Online recourse in Algorithm 2 shows
the sequential update of the TMML-RRT* (Algorithm 1).

Algorithm 2 :OnlineRecourse

X← 𝑛𝑠
for t=1 to i=𝜏 do

if X = 𝑛𝑔 then
break;

else
(𝑋𝑛𝑒𝑤 ,𝑈𝑛𝑒𝑤) ← max(X, 𝑅𝑋,𝑋𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟

)
if 𝑈𝑛𝑒𝑤 >𝑈𝑋𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟

then
𝑋𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 ← 𝑋𝑛𝑒𝑤
Rewire(X, 𝑋𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 , 𝑋𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟2)

end if
X← 𝑋𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟

end if
end for

B KF-TML PREDICTION
The main goal of the KF-TML is to use the information gain from
spatiotemporal correlation between TMCs to reduce uncertainty
in KF speed prediction. Figure 10 shows the significant percent
reduction in uncertainty of predictions when the KF-TML is em-
ployed. When speed observations with TML are close to historic
observations, the reduction in uncertainty is higher.

Figure 10: Percent change in uncertainty of KF prediction
when TML is considered
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C TMML IN SUAS ROUTING
Using k-means clustering, the map is divided into regions of sim-
ilar cell types. Clusters are formed based on the entropy and the
expected value of each cell. The optimal number of clusters for
the dataset was calculated using a Gap function, demonstrated in
Figure 11. Because of differences in scale, k-means clustering per-
forms better when entropy is expressed as a percentage rather than
a decimal value.
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Figure 11: Based on sum of squares of hurricane prediction
output uncertainty, optimal cluster of 12 is used. We cluster
the four factors across 12 time stages using 12 clusters to
create a heap map to highlight the different clusters.

Figure 12 shows principle components of those 12 clusters for
each variables across 12 hours in hurricane case study. As long as
any observation is within the same cluster, based on the correlation
measure, prediction uncertainty of multiple variables are updated.
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Figure 12: The result of multimodal multivariate cluster-
ing and temporal multimodal multivariate is described by
transforming four variables and time dimensions to three
principle components in a three-dimensional graph with cu-
mulative variation proportion of 90%.
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