Using OOI Pioneer Array data to understand: What drives ephemeral surface chlorophyll enhancements at the New England shelf break?

Hilde Oliver

Assistant Scientist, WHOI

Coauthors: Weifeng Gordon Zhang, Kevin M. Archibald, Andrew J. Hirzel, Walker O. Smith, Jr., Heidi M. Sosik, Rachel H. R. Stanley, and Dennis J. McGillicuddy, Jr.

11 September 2024

Middle Atlantic Bight (MAB) Productivity

Shelf Productivity > Slope Sea Productivity > Sargasso Sea Productivity

Is productivity enhanced at the shelfbreak?

Subsurface Chlorophyll

Surface Chlorophyll

Swordfish Distributions

 $mg m^{-3}$ Long-documented enhanced chlorophyll at the shelfbreak >5 front

Ryan et al. 1999

2

1

0.8

0.5

0.2

0.1

Ryan et al. 1999

Cloudy -> rare complete images of enhancement

Ryan et al. 1999

Cloudy -> rare complete images of enhancement

 $mg m^{-3}$ Long-documented enhanced chlorophyll at the shelfbreak front 2.5 0.5 1.5 0 42 13 Apr 2012 Chl. $(\mu g/L)$ 41 Latitude 39 (a) 38 -70 -69 -74

(SPIROPA logo)

Shelfbreak chlorophyll enhancements are ephemeral -> not visible in seasonal climatologies

-73

>5

2

1

0.3

0.

Shelfbreak Productivity Interdisciplinary Research Operation at the Pioneer Array (SPIROPA)

April 2018, R/V Neil Armstrong AR29

May 2019, R/V Ronald H. Brown RB1904

July 2019, R/V Thomas G. Thompson TN368

A Frontal Chlorophyll Enhancement in April 2018

 Enhanced chlorophyll at high horizontal and vertical stratification

Spring Transition

Sverdrup 1953

Spring Transition

Sverdrup 1953

Spring Transition

Sverdrup 1953

- Top 30 m glider data binned by horizontal density gradient $(\frac{\delta\sigma}{\delta x})$ and vertical density gradient $(\frac{\delta\sigma}{\delta z})$
- High $\frac{\delta \sigma}{\delta x}$ -> near the shelf-slope front
- High $\frac{\delta\sigma}{\delta z}$ -> front stratified near surface -> shallow MLD

 Higher proportion of bins classified "bloom" (> 2 µg/L) and highest binned chlorophyll with high horizontal and vertical density gradients

3000

2500

2000

1500

1000

500

2.2

2

1.8

1.6

1.4

1.2

- Higher proportion of bins classified "bloom" (> 2 µg/L) and highest binned chlorophyll with high horizontal and vertical density gradients
- Suggests that restratification associated with shelfbreak chlorophyll enhancements, reducing light limitation

OOI vs. ECMWF winds

OOI buoy 10 m wind speed measurements (blue) and ECMWF ERA5 reanalysis 10 m wind speeds (red) for April – May 2016 – 2019.

- Mean winds (ECMWF reanalysis) n days preceding all shelfbreak enhancements 2003-2020
- Upfront wind speeds increase in the 3 days preceding an enhancement (t=3.8, 95% confidence interval: 0.17-0.65 m2, p<0.01)

- Test role of upfront/downfront winds with 2D ROMS with NPZD-Powell (from Zhang et al. 2013)
- Initialized with climatological N profile and low values of P, Z & D

5 m/s upfront winds -> mixed layer shoals -> rapid accumulation

WOODS HOLE OCEANOGRAPHIC INSTITUTION

5 m/s downfront winds -> denser water advected over less dense water -> convective overturning -> Chl diluted

Conclusions

- Upfront winds precede enhancements
 - Driven by Ekman restratification

OOI datasets used

- Glider T/S/Fluorescence
- AR28 profiles
- 3 m winds

Thank you!

JGR Oceans

RESEARCH ARTICLE 10.1029/2021JC017715

Key Points:

- Spring enhancements of surface chlorophyll at the New England shelf break are short-lived and thus are not visible in seasonal means
- Surface chlorophyll enhancements are associated with offshore displacement of the upper part of the shelf-break front in spring

Ephemeral Surface Chlorophyll Enhancement at the New England Shelf Break Driven by Ekman Restratification

Hilde Oliver¹, Weifeng Gordon Zhang¹, Kevin M. Archibald¹, Andrew J. Hirzel¹, Walker O. Smith Jr^{2,3}, Heidi M. Sosik¹, Rachel H. R. Stanley⁴, and Dennis J. McGillicuddy Jr¹

¹Woods Hole Oceanographic Institution, Woods Hole, MA, USA, ²Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, VA, USA, ³School of Oceanography, Shanghai Jiao Tong University, Shanghai, China, ⁴Department of Chemistry, Wellesley College, Wellesley, MA, USA