Nonlinear wave interactions as a source of energy on the seafloor

Introduction

- Nonlinear interactions among multidirectional waves in deep water \rightarrow acoustic gravity waves into the water column \rightarrow can excite resonances in the coupled compressible ocean- elastic seafloor system; \Rightarrow microseisms. (Longuet-Higgins, Hasselmann, Webb, Kibblewhite, Elgar, Herbers, Guza, and others.)
- Similar effect occurs in shallow water: nonlinear interactions between swells and a sloping seafloor (Hasselmann, Ardhuin).
- is there enough energy in the acoustic-gravity waves for seafloor instruments?

Figure 1. Top row: multi-directional 'confused' seas: mid-ocean; Bottom row: waves over shoaling seafloor (e.g., Outer Banks, NC.)

Deep water: Excitation by interacting surface waves

- Treatment follows Hasselmann [1]; more general than works published since.
- Second-order pressure spectrum S_E due to surface-wave spectrum $S_{\mathcal{C}}$,

$$S_E(\boldsymbol{k},\omega) = \rho^2 g^4 \iint_{\boldsymbol{\kappa},\sigma} \iint_{\boldsymbol{\kappa}',\sigma'} S_{\zeta}(\boldsymbol{\kappa},\sigma) S_{\zeta}'(\boldsymbol{\kappa}',\sigma') (\boldsymbol{\kappa}\boldsymbol{\kappa}'-\boldsymbol{\kappa}\boldsymbol{\kappa}')^2 \frac{1}{(\sigma\sigma')^2} \cdots \\ \times [\delta(\boldsymbol{k}-(\boldsymbol{\kappa}+\boldsymbol{\kappa}'))] [\delta(\omega-(\sigma+\sigma'))] d\boldsymbol{\kappa} d\boldsymbol{\kappa}' d\sigma d\sigma'.$$

(1)

(2)

(3)

Figure 2. Estimated power density (W/m^2) based on theory. Courtesy: Joey Stanley, JHU.

$$S_A(\boldsymbol{k},t) = \sum_{n=1}^{N_G} \frac{\pi (t_{ne} - t_{ns}) D_1^2}{2\omega_1^2} S_E(\omega_1, \boldsymbol{k}) + \int_{t_{ne}}^t \frac{S_A(\boldsymbol{k},\tau)}{\tau} d\tau$$
$$S_P(\boldsymbol{k},\omega) = \frac{dP_1 dP_1^*}{d\boldsymbol{k} d\omega} = \left(\lambda \gamma^2\right)^2 S_A(\boldsymbol{k},\omega),$$

Power density (W/m²) at the seafloor:

$$\Pi(\boldsymbol{k},\omega) = \sqrt{S_W(\boldsymbol{k},\omega)d\boldsymbol{k}d\omega}; \ S_W(\boldsymbol{k},\omega) = \frac{S_P(\boldsymbol{k},\omega)}{\rho c_1}.$$

Umesh Korde[†] and Steve Elgar[‡]

[†] Johns Hopkins University (JHU) and \ddagger Woods Hole Oceanographic Institution (WHOI)

Resonant energy transfer: surface waves to seafloor

- Finite depth compressible ocean over semi-infinite elastic seafloor, coupled through interface/boundary conditions.
- Underwater wave groups comprised of acoustic-gravity waves in water and Scholte waves on seafloor [2].
- When (σ, κ) in $(1) \rightarrow (\omega, k) \in a$ dispersion surface defined by the interface conditions $[2] \rightarrow$ resonant energy transfer from surface to seafloor.
- \Rightarrow for small dissipation, forced second-order spectrum grows linearly with time, though 'interaction times' may be short.
- Forced wave number spectra for pressure; multiple generation areas:

Possible generation areas and group propagation directions

Figure 3. Scripps array mid-Atlantic at \sim 34°N, 36°W [3], and predicted (curve) + measured (symbols) pressu

Shallow water wave-seafloor interactions

Figure 4. Schematic view of the interactions being studied.

- Waves interact with the seafloor and with their own reflections from shore. Solution for random wave inputs developed using Fourier-Stieltje integrals.
- Boussinesq equations (with reflections) with nonlinearity and dispersion used [4].
- Equations first normalized, then expanded in a perturbation series in $\alpha = A/d_0$, A being the predominant wave amplitude and d_0 the water depth at shelf bottom.

Shallow water results

Figure 5. Spectral density vs. frequency for computed sea surface elevation pressure field (black curve) computed sea-surface elevation spectrum converted to equivalent bottom pressure at 31-m depth (dashed-black), and observed pressure at the bottom in 31-m depth (dashed-red). Date: 12/15/21, 00:30 hrs. 32.9°N, 117.3°W, depth = 31m.

Figure 6. Pressure and power density at the undisturbed free surface due to the shallow-water random waves at 31m depth (surface $H_s = 2.6$ m).

Conclusions

- Seafloor power densities in the range 5-35 W/m² estimated in some parts of the ocean in deep water.
- Shallow water power densities approach 1 W/m² for surface significant wave heights H_s = 2.6m.
- Extensions to enable shallow-water microseism amplitudes in progress.

References

ires.	 K. Hasselmann. A statistical analysis of the generation of microseisms. Reviews of Geophysics, 1(2):177–210, 1963.
	[2] U.A. Korde. Propagation of underwater wave groups in a compressible ocean coupled with an elastic seafloor. Journal of Fluid Mechanics, 2024. in press.
	[3] R.A. Dunn, R. Arai, D.E. Eason, J.P. Canales, and R.A. Sohn. Three-dimensional seismic structure of the Mid-Atlantic Ridge: An investigation of tectonic, magmat hydrothermal processes in the Rainbow area. Journal of Geophysical Research: Solid Earth, 122:9580–9602, 2017.
	 [4] G.B. Whitham. Linear and Nonlinear Waves, chapter 14. John Wiley & Sons, NY, 1973. A Wiley-Interscience Publication.
2S	Acknowledgements
	DEPARTMENT OF THE NAVI

tic, and