

# Self-Adaptive Digital Twin-based Active Climate Learning

Lack of active learning epistemic uncertainty within the ocean observation community.

## **OVERVIEW**

- Traditional models train data precisely and implement it according to the fit principle without addressing dynamics/uncertainties.
- •Heterogeneous time-serial data limits transferring parameters to different locations.
- •In this project, the knowledge discovery of heterogeneity observed environmental variables and unobserved (unmeasured) variables will improve the prediction accuracy.



•A prototype of Hurricane digital twin is presented.



### **ONLINE TMML**

- •Time-dependent realization of uncertainties measure how well multinomial posterior  $q\lambda$  (z |x| approximates the true posterior p(z|x), using KL divergence  $KL(q\lambda(z | x) | | p(z | x))$ .
- •Online learning sequentially updates rapidly exploring random tree star (RRT\*).
- •Vehicle traverses path, observations are made and variational Bayesian inference generates a posterior belief given the prior belief of cell type distributions within each cluster.

Spatiotemporal learning heterogeneity enable knowledge transfer from one site to another.



A Street

• Clustered TMML distribution of four variables across all time stages ( $4 \times 12$  cells).



•One observation of temperature within cluster 1 at time 1 are used in removing prediction uncertainties of humidity in cluster 2 at time 3.

n Online Recourse

 $T, z_{rand}$ ) rest,  $z_{rand}$ )

 $MML(z_{near}, z_{nearest}, z_{new})$ new, T)  $(x, z_{new})$ 

 $\Gamma, n_s, n_q$ 

John Park h1park@odu.edu





Explainable AI and graphical deep learning

integrate multimodal sensory data.



### CONCLUSIONS

•A new family of RL indirectly learn and transfer TMML information.

|  | Shortest (MDM) = 2.36% |              | Non Temporal |         |
|--|------------------------|--------------|--------------|---------|
|  |                        |              | Unimodal     | Multimo |
|  | Correlation            | Univariate   | 2.66%        | 4.34%   |
|  |                        | Multivariate | 3.28%        | 6.25%   |
|  | Deep Multivariate      |              | -            | 7.37%   |

- •Average improvement in predicted multimodal measurement was significantly higher when TMML were considered.
- •TMML solve challenging tasks where the uncertainty is revealed in a sequence by grouping samples within similar distribution types and inferring the posterior based on expected observations.





