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A B S T R A C T

We evaluate several algorithms for the estimation of phytoplankton size class (PSC) and functional type (PFT)
biomass from ship-based optical measurements in the Subarctic Northeast Pacific Ocean. Using underway
measurements of particulate absorption and backscatter in surface waters, we derived estimates of PSC/PFT
based on chlorophyll-a concentrations (Chl-a), particulate absorption spectra and the wavelength dependence of
particulate backscatter. Optically-derived [Chl-a] and phytoplankton absorption measurements were validated
against discrete calibration samples, while the derived PSC/PFT estimates were validated using size-fractionated
Chl-a measurements and HPLC analysis of diagnostic photosynthetic pigments (DPA). Our results showflo that
PSC/PFT algorithms based on [Chl-a] and particulate absorption spectra performed significantly better than the
backscatter slope approach. These two more successful algorithms yielded estimates of phytoplankton size
classes that agreed well with HPLC-derived DPA estimates (RMSE = 12.9%, and 16.6%, respectively) across a
range of hydrographic and productivity regimes. Moreover, the [Chl-a] algorithm produced PSC estimates that
agreed well with size-fractionated [Chl-a] measurements, and estimates of the biomass of specific phytoplankton
groups that were consistent with values derived from HPLC. Based on these results, we suggest that simple [Chl-
a] measurements should be more fully exploited to improve the classification of phytoplankton assemblages in
the Northeast Pacific Ocean.

1. Introduction

Marine phytoplankton play a central role in ocean ecology and
global carbon cycling (Caddy et al., 1995; Parsons and Lalli, 2002). On
an annual basis, these microscopic organisms convert approximately 50
GT of CO2 into organic matter (Siegenthaler and Sarmiento, 1993),
supporting nearly all marine upper trophic level biomass, and con-
tributing substantially to the oceanic uptake of atmospheric CO2

through the biological carbon pump. Understanding the quantitative
significance of phytoplankton to ocean ecology and biogeochemical
cycling requires information on total biomass, as well as the relative
biomass of different phytoplankton size classes (PSCs) and functional
types (PFTs). These PSCs/PFTs categorize phytoplankton assemblages

based on various characteristics including cell size, and physiological
and metabolic attributes.

By definition, different PSCs/PFTs contribute in unique ways to
ocean ecology and biogeochemical cycles. For example, differences in
cell size and the presence of mineral-phase shells in some groups (e.g.
diatoms and some coccolithophores) influence phytoplankton sinking
rates and their contribution to vertical carbon fluxes (Armstrong et al.,
2002; Buesseler, 1998; Francois et al., 2002; Klaas and Archer, 2002;
Michaels, 1988). In addition, certain phytoplankton groups play spe-
cific roles in elemental cycles through nitrogen fixation (many cyano-
bacteria), elevated production of dimethyl sulfide (many prymnesio-
phytes, silicoflagellates and dinoflagellates), and the uptake of silicic
acid (all diatoms). Classification of a phytoplankton assemblage into
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PSCs/PFTs can also shed light on carbon uptake capacity (Platt and
Denman, 1977) and different nutrient and light requirements for
growth (Aiken et al., 2008; Bouman et al., 2005; Platt et al., 2005). For
example, large phytoplankton with low surface area to volume ratios
(e.g. many diatoms) require nutrient-rich water to sustain active
growth, while smaller pico-phytoplankton (e.g. Synechococcus and
Prochlorococcus) have higher surface area to volume ratios and more
efficient nutrient uptake mechanisms, enabling them to thrive in oli-
gotrophic regions (Waterbury et al., 1979; Zubkov et al., 2003).

In some instances, there may be a good correspondence between
taxonomic and PFT classifications. For example, calcifying phyto-
plankton groups are mostly represented within the Prymnesiophyte
class, whereas silicon cycling is associated specifically with diatoms.
For this reason, estimation of PFTs has often been linked to an analysis
of phytoplankton taxonomic composition. Traditionally, estimates of
phytoplankton community composition relied on analysis of discrete
water samples using microscopy (e.g.,Booth et al., 1993). This approach
can provide unambiguous information on phytoplankton assemblage
taxonomy down to the species level. However, the method is time
consuming and requires significant expertise, and the identification of
phytoplankton species by light microscopy is challenging in regions
dominated by smaller cell assemblages (e.g. pico-eukaryotes). To cir-
cumvent these problems, there has been increasing use of high per-
formance liquid chromatography (HPLC) for the analysis of accessory
photosynthetic pigments as diagnostic indicators of certain phyto-
plankton groups (Uitz et al., 2006; Vidussi et al., 2001). Two major
analysis schemes have been developed to identify taxonomic composi-
tion based on a matrix of pigment concentrations (CHEMTAX, (Mackey
et al., 1996) and diagnostic pigment analysis (DPA), (Hirata et al.,
2011a; Uitz et al., 2006; Vidussi et al., 2001)). Note that the original
DPA analysis developed by Vidussi et al (2001) and revised by Uitz
et al. (2006) was developed for estimating phytoplankton size classes,
not taxonomic groups. Hirata et al. (2011b) interpreted the DPA for
identification of phytoplankton groups, but these authors did not pre-
sent independent microscopy or molecular data to validate their de-
rived taxonomic abundance estimates. While HPLC data are potentially
advantageous over microscopy for studying phytoplankton composi-
tion, there are uncertainties and limitations with HPLC data, as pigment
concentrations are sensitive to environmental conditions (e. g. light and
nutrient supply) (Obayashi et al., 2001).

In recent years, there has been increasing interest in automated
methods to estimate PSC/PFT abundance/biomass from ship-board cell
counting/imaging, and from optical measurements. For example, ship-
board imaging flow cytometers (e.g. FlowCAM) can optically measure
size and shape attributes of individual cells, while providing digital
microscopic images for taxonomic identification. This method has been
used with some success (Zubkov et al., 2000, 2003), but sample analysis
requires deep learning algorithms with extensive training reference li-
braries, and is restricted to pico- and nano- planktonton groups. An-
other approach is based on the measurement of seawater inherent op-
tical properties (IOPs) to quantify absorption and backscattering
coefficients across multiple wavelengths. These observations can pro-
vide insight into the composition of phytoplankton assemblages and
particle size distributions, based on taxonomic and size-dependent ef-
fects on light absorption and backscatter spectra (Ciotti et al., 2002;
Kostadinov et al., 2009; Lin et al., 2014; Organelli et al., 2013; Xi et al.,
2015; Zhang et al., 2015). The measurements can be collected from
flow-through systems (Slade et al., 2010), moorings (Bélanger et al.,
2013; Twardowski et al., 2007), satellites and aircraft (Alvain et al.,
2005; Kostadinov et al., 2009; Uitz et al., 2006), enabling observations
over a large range of spatial and temporal scales.

In this article, we examine the utility of IOP measurements to pro-
vide information on PSCs/PFTs in the Subarctic Pacific Ocean. This
region is characterized by contrasting hydrographic and productivity
regimes, from iron-limited HNLC offshore waters to high productivity
coastal upwelling regimes. Significant research has been conducted to

examine the spatial and temporal variability of phytoplankton biomass
and productivity in this region (Harrison et al., 2004, 1999), as well as
the taxonomic composition of phytoplankton assemblages based on
microscopy (Booth et al., 1993; Peña and Varela, 2007). To our
knowledge, however, there has been no attempt to use IOP measure-
ments to examine phytoplankton taxonomy and PSCs/PFTs in the
Subarctic North Pacific. Such an approach, if validated, would be of
significant benefit in understanding ecosystem variability in this region
and its response to environmental forcing. Our objective was to collect
new observations of seawater IOPs across a range of hydrographic and
productivity regimes in the Subarctic Pacific, and to compare several
existing algorithms for PSCs/PFTs determination against size-fractio-
nated [Chl-a] measurements and HPLC analysis of accessory photo-
synthetic pigments.

2. Methods

2.1. Underway optical measurements

Seawater optical properties were measured on three oceanographic
cruises conducted during spring and summer, 2016. The Line P and La
Perouse cruises were conducted on the CCGS John P. Tully during May/
June, while a third expedition was conducted in July on the R/V
Oceanus. The cruise tracks (Fig. 1) covered a range of hydrographic and
productivity regimes in the northeast Subarctic Pacific Ocean.

We used the same ship-board underway analysis system on all three
cruises. The system was operated autonomously, with custom LabVIEW
software (National Instruments) used to run all aspects of system con-
trol and data acquisition, including GPS position information. Optical
measurements were derived from an underway flow-through system,
which sampled a continuous surface (~ 5m) seawater supply through
various sensors. Flowing seawater (5 Lmin-1) was passed through a
debubbler prior to analysis by a WETLabs ECO-BB3 meter to measure
backscattering at 117o at 3 wavelengths (470, 532 and 650 nm)
(Dall’Olmo et al., 2012), followed by a WetLabs AC-s to measure ab-
sorption and attenuation at 83 wavelengths between 400 nm and
740 nm. Raw data derived from the BB3 and AC-s were treated in
MatLab to derive estimates of phytoplankton absorption and particulate
backscatter (see below). All underway measurements were averaged
into 1min sampling bins along the cruise tracks.

We removed the contribution of dissolved seawater constituents to
the measured AC-s absorption signal. To do this, an automated 3-way
valve redirected sample water through in-line 1 µm and 0.2 µm pore-
size filters for 10min out of every 70min of continuous seawater
measurements. The filtrate provided a measure of the optical properties
of dissolved constituents, and this value was subtracted from our
measurements to isolate the particulate absorption (ap) signal.
Following the approach of (Slade et al., 2010), ap was adjusted by
spectrum discontinuity and residual temperature corrections using
Matlab function fminsearch. The latter correction is based on the posi-
tive correlation between water temperature and absorption at 470 nm.
All details for this correction can be found in WebLab AC-s user manual
(http://www.seabird.com/sites/default/files/documents/acsm.pdf).

The BB3 sensor was installed in a custom-built dark acrylic chamber
with a volume of 4 L. Following the method described by (Dall’Olmo
et al., 2012), we measured particulate backscatter at 470, 532, 650 nm
using the BB3 sensor. Dark counts (D) and wall effects (bb wall, ) from the
chamber were measured as described by Burt et al. (2018) and sub-
tracted from the measured sample counts (C). A scale ratio from factory
calibration of the BB3 instrument was used to convert the corrected
digital counts to the volume scattering function (m-1) (S) and an angle-
specific chi factor (an χp factor of 1.1 relating to the volume scattering
function at 117°to bbp) was applied to estimate particulate back-
scattering (bbp) (Dall’Olmo et al., 2012) (Fig. 2).

= − − −b πχ S C D β b2 [ ( ) ]bp p SW b wall, (1)
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2.2. In situ Chl-a and aph measurements

The robustness of the PFT/PSC classification approach described
below depends upon the capability of continuous flow-through mea-
surements to accurately quantify surface ocean optical properties. To

assess this, we compared a suite of properties derived from discrete
calibration samples against underway optical measurements obtained
within 5min of the discrete sample collection times (Fig. 3).

2.2.1. Underway Chl-a estimation
Continuous underway measurements of [Chl-a] were derived from

Fig. 1. Cruise map for the Line P and Oceanus cruises (a), and the La Perouse cruise (b). Stations identified with numbers show the locations where discrete samples
for absorption spectra were collected. Asterisks denote stations where discrete HPLC and fluorescence [Chl-a] samples were collected for calibrations of [Chl-a] line
height estimation and DPA analysis.

Fig. 2. Flowchart of the method used to tune and validate ship-board underway measurements. Step 1 involved the regional tuning and validation of the relationship
between discrete [Chl-a] and absorption line height (ap

LH), measured from all three summer 2016 cruises (n= 85). Step 2 is the tuning and validation of phyto-
plankton absorption (aph*) values from the Zhang et al. (2013) inversion with filter pad-based aph* collected on the Oceanus cruise. Steps 3, 4, and 5 are estimates of
micro%, nano% and pico% (fraction of phytoplankton> 20 µm, 2–20 µm and<2 µm) using three algorithms described in Section 2.3. Steps 6 and 7 are validations
of underway PSCs% and PFTs% estimates, derived from the three algorithms, against HPLC-derived diagnostic pigment analysis (DPA) based on Hirata et al. (2011b).
For this validation, we used HPLC measurements collected on the Oceanus cruise (n= 65) and, also measurements of discrete [Chl-a] (via discrete fluorescence
analysis) and HPLC-based DPA from historical Line P cruises (2007–2011, n= 43).
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the 676 nm absorption line height (ap
LH) approach developed by

(Roesler and Barnard, 2013). This absorption peak is believed to have
no significant contribution from non-algal particles (NAP), thus pro-
viding a proxy for [Chl-a]. We derived a regional relationship between
underway ap

LH measurements and [Chl-a] by regressing underway
measurements against 138 discrete [Chl-a] measurements collected
from Niskin bottle casts (5 m depth) during the three cruises. For these
discrete measurements, duplicate 500mL samples were filtered under
low vacuum (<15 kpa) onto 0.7 µm Whatman GF/F filters, and stored
in a − 80 °C freezer until subsequent analysis within several days. Prior
to analysis, filters were immersed in 90% acetone overnight at − 20 °C
to extract [Chl-a]. The extracts were analyzed using fluorometry (10-
AU Fluorometer, Turner) before and after the addition of 10% HCl to
estimate Chl-a and phaeophytin-a concentrations, respectively. Dupli-
cate measurements with a relative measurement error less than 10% of
the mean were used for this validation exercise. These discrete [Chl-a]
measurements were compared to average ap

LH values obtained within
a± 5min interval of sample bottle closure at discrete sampling sta-
tions. This match up resulted 85 paired measurements for comparison.
Some discrete validation points could not be used, as they coincided
with periods when system filters were being changed on station, or
during periods of automated blank measurements.

In follow up cruises to the Subarctic Pacific during summer 2017,
we also collected discrete measurements of size-fractioned [Chl-a] to
validate PSC estimates. These cruises were conducted on the John P.
Tully and Oceanus, following cruise tracks similar to those described
above for our 2016 work. For this analysis, we filtered 500mL of water
through 3 stacked polycarbonate filters (20, 2 and 0.2 µm) separated by
mesh spacer disks. The filters were treated as described above for
fluorescence [Chl-a] measurements, and the resulting data used to es-
timate the fraction of total phytoplankton biomass in the three different
size classes.

2.2.2. Filter pad aph measurements
Phytoplankton absorption (aph) spectra in discrete calibration

samples were measured spectrophotometrically using the filter pad
approach described by (Mitchell, 1990; Pegau et al., 2002). For these
measurements, 500mL of seawater were filtered onto triplicate 25mm
GF/F filters at every station during the Oceanus Cruise. All filters were
immediately frozen in liquid nitrogen and stored at − 80 °C before
analysis by spectrophotometry (100 Bio UV–Visible Spectrophotometer,
Cary).

Filters were measured once to obtain the total particulate absorp-
tion (ap) spectrum, which includes contributions from phytoplankton

and non-algal particles (aNAP), and measured again following an ex-
traction in 90% methanol to remove pigments from the sample. The
spectrum obtained in the methanol-extracted samples represents the
contribution of non-algal particles (NAP, i.e. detritus) to absorption,
and this is subtracted from the total particulate signal to obtain an es-
timate of phytoplankton-specific digital counts (Dph). This value was
converted to aph following Mitchell et al. [1990]:

=a λ D λ
A

βV
( ) 2.303[ ( )]ph ph

eff

filt (2)

=β λ D λ( ) 2.2536 ( )ph
0.0738 (3)

∈λ [400, 700]

where Aeff is the effective area of the filter pad (m2) and Vfilt (m3) is the
volume of the sample filtered, λ is band wavelength. These measure-
ments are spectrally dependent, but the wavelength-dependence term,
λ, will be omitted from the remainder of the paper in the interest of
brevity. The empirical β value corrects for the difference in the path
length through the sample on a filter pad versus a sample in suspension
(Bricaud and Stramski, 1990). The coefficients used to estimate β are
based on Eqs. (2) and (3) derived from the optimal fit between un-
derway aph values from AC-s measurements and filter-pad Dph. Previous
work has shown that the filter-pad aph values calculated using this
power-law β correction better match aph values derived from AC-s
measurements (Slade et al., 2010). In our case, applying the β correc-
tion to the filter pad aph adjusted the absolute values by< 7% at all
visible wavelengths (400–700 nm), leaving the spectral shapes largely
unchanged.

2.2.3. HPLC measurements and diagnostic pigment analysis
We used HPLC measurements to quantify the concentration of

various accessory phytoplankton pigments. Discrete samples for pig-
ment analysis (1 L) were collected on the Oceanus cruise. Samples were
filtered onto GF/F filters, flash frozen in liquid nitrogen and stored at
− 80 °C until analysis within several months. Samples (n= 65) were
analyzed at the NASA Goddard Space Flight Center Ocean Ecology
Laboratory (Van Heukelem and Thomas, 2001). We also obtained ad-
ditional archived HPLC data (n= 43) from Line P cruises between 2007
and 2011 (Nemcek and Pena, 2014).

We used DPA of the HPLC data to derive estimates of the size
structure and taxonomic composition of phytoplankton assemblages in
the discrete samples. The size classes approach, initially developed by
(Vidussi et al., 2001) and refined by (Uitz et al., 2006), classifies phy-
toplankton group biomass based on the relative concentration of certain
diagnostic pigments (DP) normalized to total [Chl-a]. Following the
model of Hirata et al. (2011b), we applied this DPA approach to esti-
mate the relative biomass of six phytoplankton groups (diatoms, dino-
flagellates, prymnesiophytes, chlorophytes, pico-eukaryotes, and pro-
karyotes) and three phytoplankton size classes, micro-phytoplankton
(> 20 µm diameter), nano-phytoplankton (2–20 µm diameter) and
pico-phytoplankton (< 2 µm diameter). These DPA-based estimates
were used to validate optically-derived estimates of PSCs/PFTs (see
Table 1).

In addition to the validation measurements we conducted on our
cruises, we also used data from the Line P program data archive to
examine the relationship between Chl-a concentrations and PSCs/PFTs.
These historical data were derived from the same Line P stations shown
in Fig. 1, and include discrete measurements of fluorescence-based
[Chl-a] concentrations, and HPLC measurements of photosynthetic
pigments to validate the [Chl-a] based approach in NP.

2.3. Optical estimates of phytoplankton functional groups

We compared the ability of four different algorithms to estimate the
fraction of different phytoplankton size classes in the surface water

Fig. 3. Power law regression between line height of ap 676 nm and discrete
fluorescence [Chl-a], r2= 0.95, RMSE between measured and predicted [Chl-
a] is 0.16mg/m3. Grey lines denote the results of 1000 boot-strap analyses,
used to define the uncertainty of this approach.

C. Zeng et al. Deep-Sea Research Part I 136 (2018) 107–118

110



assemblages (Fig. 2). These algorithms were the [Chl-a] based algo-
rithm (Hirata et al., 2011b), the two end-member spectral fitting al-
gorithm (Zhang et al., 2013), three end-member spectral decomposition
algorithm (Zhang et al., 2015) and the backscatter slope algorithm
(Kostadinov et al., 2009). Applications of these algorithms are briefly
described below, and readers are referred to the original publications
for more detailed information.

2.3.1. Chl-a based approach
Hirata et al. (2011b) developed an algorithm to estimate PSCs/PFTs

biomass based on the relationship between total [Chl-a] and HPLC-
derived DPA from a global data set of observations. This approach is
based on the relationship between PSC distributions and trophic status,
with eutrophic waters ([Chl-a]> 1mg/m3) typically dominated by
micro-phytoplankton such as diatoms, and oligotrophic waters ([Chl-
a]< 0.1mg/m3) dominated by pico-phytoplankton (Zhang et al.,
2015). We applied the algorithm of Hirata et al. (2011b) using our
underway [Chl-a]LH measurements from all three cruise tracks. The
PSC/PFT estimates derived from this approach were validated against
estimates obtained using discrete HPLC measurements (Section 2.2.3).
The relevant equations for this model are presented in Table 1.

2.3.2. Two end-member spectral fitting approach
Spectral response algorithms estimate PSCs/PFTs using the ab-

sorption spectra of different phytoplankton size classes (Zhang et al.,
2015, 2013) inferred from laboratory measurements of mono-specific
phytoplankton cultures (Ciotti et al., 2002; Uitz et al., 2008). Size-de-
pendent differences in aph spectra result from both the unique pig-
mentation of different groups, and also from size-dependent pigment
packaging effects (Bricaud et al., 2004). We used the spectral fitting
approach of Ciotti et al. (2002) to estimate the fractional contribution
of two phytoplankton end member groups, pico and micro-phyto-
plankton, to total aph from 400–700 nm (Zhang et al., 2013). We ap-
plied a non-linear fitting approach (Zhang et al., 2013) to separate the
contributions of aph and aNAP to total AC-s derived ap, where aNAP is an
exponential function of wavelength, and aph is derived from the com-
bination of two kernels, a *micro and a*pico.

= × +a Chla a a[ ] *p LH ph NAP (4)

= × + − ×a c a c a* * (1 ) *ph micro pico1 1 (5)

= − −a c eNAP
c λ

2
( 400)3 (6)

In Eqs. (4) and (5), a*ph is aph normalized to [Chl-a]. The input
kernels a a* , *micro pico used in our fitting procedure were obtained from
Ciotti et al. (2002) who derived a*ph from size fractioned samples. We

applied a constrained nonlinear estimation using the Matlab function
fmincon to approximate coefficients c1, c2 and c3 based on an absolute
value penalty function. The range for each unknown c1, c2 and c3 were
based on published values (Zhang et al., 2013).

2.3.3. Three end-member spectral decomposition approach
In more recent work, Zhang et al. (2015) modified their model into

a three group PSCs estimation approach. This approach decomposed ap
into 4 kernels of a a a* , * , *micro nano pico and based on Singular Value Decom-
position (SVD). This decomposition inverted linear system combination
of 4 kernels by regulating coefficient values within the range of [0, 1].
Those coefficients represent the relative contribution of micro-
plankton, nano-plankton, pico-plankton and CDOM. The kernels of
PSCs were provided from Utiz et al., 2008. The kernel of were shown as
follows:

= − −a λ a λ( ) (400)exp ( 0.011( 400))CDOM CDOM (7)

Where, − 0.011 denotes for the slope of CDOM they approached from
two global datasets (Laboratoire d’Océanographie de Villefranche da-
taset and the NASA bio-Optical Marine Algorithm Dataset), and a time
series dataset of coastal ocean (the Martha's Vineyard Coastal Ob-
servatory dataset).

2.3.4. Backscatter slope approach
Previous studies have shown that spectrally-resolved backscatter

coefficients can be used to estimate phytoplankton cell sizes.
Kostadinov et al. (2009) employed a Mie theory-based relationship
between the bbp slope and particle size distribution (PSD) to estimate
pico-, nano-, and micro- size particle volumes and abundances. The bbp
coefficients we measured at the three BB3 wavelengths (479, 532,
650 nm) were fit to a wavelength-dependent exponential function to
obtain a bbp slope (η). We then used the look-up table of Kostadinov
et al. (2009) to derive a unique particle size distribution slope ξ( ) value
for each measured value of η, allowing us to estimate the relative vo-
lumetric contribution of different particle size classes:

=
−

−− −V
ξ

π N D D D1
4 6

( )ξ
max

ξ
min

ξ
0 0

4 4

(8)

where V is the particle volume in three size ranges, and D corresponds
to three particulate diameter intervals, pico-(0.5–2 µm), nano-
(2–20 µm) and micro-(20–200 µm) phytoplankton. Fractions of dif-
ferent size classes (e.g. micro-phytoplankton; micro%) were calculated
by the volume ratio with the sum of all size classes (e.g. Vmicro/
Vpico+nano+micro).

Table 1
Coefficients and formula on estimating PSCs/PFTs.

PSCs/PFTs DPA model [Chl-a] based approachb

Micro-plankton 1.41(Fuco+Perid)/∑ DPa + − + −x[0.9117 exp ( 2.733 0.4003)] 1

Nano-plankton (0.5 *1.27Hex+1.01Chl-b+0.35But+0.6Allo)/ ∑ DPa 1-Micro-Nano
Pico-plankton (0.86Zea+0.5 *1.27Hex)/ ∑ DPa − + − − +−x x[0.1529 exp(1.0306 1.5576)] 1.8597 2.99541

Diatom 1.41Fuco/∑ DPa nkton size classes in the surface water ass
Dinoflagellate 1.41Perid/∑ DPa Micro-Diatom
Chlorophyte 1.01Chl-b/ ∑ DPa − −x(0.249/y)exp[ 1.2621( 0.5523) ]2

Prymnesiophytes (0.5 *1.27Hex +0.35But+0.6Allo)/ ∑ DPa Nano- Chlorophyte
Prokaryotes 0.86Zea/ ∑ DPa

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡
⎣

− ⎤
⎦

−exp x
0.0067
0.6154

y
19.519( 1.8597)2

0.61542

+ − +x x0.1027 0.1189 0.06262

Pico-eukaryotes 0.5 * 1.27Hex/ ∑ DPa Pico - Prokaryotes

a ∑ DP = 1.41Fucoxanthin (Fuco) + 1.41Peridinin (Perid) + 1.27 19’-Hexanoyloxyfucoxanthin (Hex) + 0.6Alloxanthin (Allo) + 0.35Butanoyloxyfucoxanthin
(But) + 1.01Chlorophyll-b (Chl-b) + 0.86 Zeaxanthin (Zea) = Chl-a.

b = − = −log Chl a y Chl ax ( );10 .

C. Zeng et al. Deep-Sea Research Part I 136 (2018) 107–118

111



2.4. Satellite matchups

The ocean color-derived [Chl-a] estimates were collected for sa-
tellite match ups, using the daily merged outputs from the OCI algo-
rithm of AquaModis remote sensing reflectance data, with 4 km spatial
resolution. We extracted the underway [Chl-a] located within each of
the satellite pixels for each sampling day, resulting in 2080 paired
match up data points for all three 2016 cruises. Mean and standard
deviation were calculated for each underway [Chl-a] matching
window. We removed all match up points where the in situ Chl mea-
surements showed a relative standard deviation greater than 10%.

2.5. Error analysis

For Monte Carlo uncertainty estimation, we used the equations of
Hirata et al. (2011b) (Table 1) to derive PFTs from a set of 10,000
normally distributed [Chl-a] values ranging from 0.1 to 10mg/m3. We
examined the sensitivity of the calculations to± 15% random noise
added to [Chl-a]. Furthermore, we used the resulting PFTs estimates to
derive concentrations of the various diagnostic pigments, by inverting
the equations of Hirata et al. (2011b) (Table 1). These pigment esti-
mates were, in turn, used to estimate PFTs using a DPA approach. We
then re-computed the DPA results allowing either± 5 or 15% random
error in the pigment concentrations to examine the resulting effect on
PFTs estimation. The resulting difference in the magnitude of each
PSCs/PFTs was considered as the bias caused by the noise in the initial
pigment composition assigned for each phytoplankton group.

3. Results

3.1. Tuning and validation of the underway measurements

The discrete sample data set collected over three cruises allowed for
regional tuning and validation of absorption line height-based [Chl-a]
measurements (apLH), and AC-s derived phytoplankton absorption
spectra (aph). Prior studies have documented a power law relationship
between ap

LH and [Chl-a], which results, in part, from phytoplankton
pigment packaging (Nelson et al., 1993). In our data set, we also found
a strong correlation between ap

LH and discretely measured [Chl-a] in 85
underway match-ups. Best-fit coefficients yielded a predictive power-
law relationship that explained 95% of the total variance (r2 = 0.95) in
[Chl-a], with an RMSE of 0.16mg/m3 (Eq. (2)). The model was fit using
the cross-validation bootstrap method to calculate appropriate coeffi-
cients and estimates of RMSE for model validation. All coefficients and
RMSEs from 1000 iterations were averaged for optimal output. Grey
lines in Fig. 3 show the regression of all 1000 results and provide an
estimate of the uncertainty of this approach, where higher [Chl-a] has
higher uncertainties. Even in the most productive waters, with [Chl-a]
higher than 20mg/m3, the relative uncertainty was smaller than 12%
The strength of this relationship confirms the efficacy of using un-
derway absorption line height as a measure of [Chl-a] in our study
region.

=Chla a[ ] 132.8LH p
LH1.0906 (9)

Underway measurements of aph compared well with discrete aph
measured by the filter pad method (Fig. 4). For all sample matchups,
the shoulders, peaks and slopes from both methods occurred at nearly
identical wavelengths, with similar wavelength-dependent slopes. The
similarity in spectral shapes between the discrete and underway mea-
surements was quantitatively assessed by computing hyper-dimensional
Euclidean distances between the two spectra. The results of this analysis
showed that the maximum error was 0.05m-1, and the average error
over all wavelengths (0.0003m-1) was less than 7% of the aph* signal.
This matchup validates the use of the non-linear fitting function (Zhang
et al., 2013) (Section 2.3.2) to differentiate aph from total ap.

An abnormal feature around 580–600 nm of underway aph* was also

apparent in our measurements, as a small drop in absorption (e.g see
Fig. 4.c). There are three potential causes for this feature. Low phyto-
plankton absorption in this wavelength band resulted in weak signals
that were vulnerable to measurement errors. Moreover, the AC-s in-
strument has a discontinuity within 580–600 since the two sensors
converged at this wavelength at the outer limited of their measurement
windows (~400 to ~590 nm and ~590 to ~750 nm, respectively). Fi-
nally, we applied residual temperature correction for approaching ap
and then aph* . The pure water temperature dependence used in this
correction has a bump in around 600 nm (shown in Fig. 2.b of Slade
et al., 2010), which could contribute the apparent drop in signal in-
tensity. Although the exact cause of this signal anomaly is not clear, it
has only a minor effect on our analyses.

Measurements of bbp at wavelengths of 470, 532 and 650 nm had a
range of 0.001–0.315m-1, 0.0006–0.028m-1, 0.0005–0.029m-1, re-
spectively, while the wavelength-dependece of bp (η) varied between
− 1.5 and 2.9m-1. Following the work of (Kostadinov et al., 2009), we
interpret this variability in terms of shifts in particle size distributions.
Slopes were generally lower in eutrophic waters, indicating larger
particles, whereas higher slopes in non-productive areas indicated
lower mean particle sizes. As an example of this, Fig. 5 shows a sharp
gradient in the back-scatter slope across a transition zone from low to
high Chl-a (associated with a hydrographic frontal zone). These results
were derived from a portion of the Line P cruise (from latitude 48.86°,
longitude −129.23° to latitude 48.97° longitude −130.67°) in the vi-
cinity of Vancouver Island, where we encountered a prominent hy-
drographic frontal feature caused by eddy (Burt et al., in press).

3.1.1. PSCs estimation based on four different phytoplankton size
estimation algorithms

Estimates of PSCs derived using four different algorithms (Section
2.3) were compared against values derived from DPA analysis of dis-
crete HPLC data (Fig. 6). The [Chl-a]-based approach showed the best
match with HPLC-derived estimates, capturing 88%, 67% and 86% of
the variation micro%, nano% and pico%, respectively (i.e. r2= 0.88,
0.67 and 0.86). All of the other approaches, spectral fitting, spectral
decomposed and bbp slope approaches showed a poorer fit to the vali-
dation data. The two end-member spectral fitting approach produced
the second best results, explaining more than 80% of the variance in
micro% (r2= 0.84 and RMSE= 0.12) and pico% (r2= 0.82 and RMSE
= 0.07). The three end-member spectral decomposition approach
produced lower accuracy estimates, with r2 values of 0.51, 0.35 and
0.14 for pico%, micro% and nano%, respectively. The bbp slope ap-
proach was unable to explain more than one third of the variance in
PSCs observed in HPLC-derived DPA analysis with r2 values of 0.31,
0.12 and 0.29 for micro%, nano% and pico%, respectively.

We further validated the PSCs-estimates derived from the Hirata
et al. (2011b) model against discrete measurements of size-fractioned
[Chl-a]. This validation was based on a set of observations made during
summer 2017 cruises to the Subarctic Pacific Ocean (see methods). The
results show good general agreement between the predicted and ob-
served micro% (Fig. 7; r2= 0.78, RMSE = 0.12,), with somewhat
poorer agreement for nano% (r2= 0.50, RMSE = 0.11) and pico%
(r2= 0.50, RMSE = 0.13). Most of the points fall within the 15% in-
terval of the Hirata et al. (2011b) model, although there was a tendency
to under-predict micro% and over-predict nano% at low Chl values. In
addition, there were two obvious outliers, where the model sig-
nificantly over-predicted micro% and under-predicted nano% relative
to observed values (in the dashed circle of both figs). These two points
were derived from measurements on the 2017 Oceanus cruise in the
vicinity of an elevated calcite signal observed from satellite.

3.1.2. Estimation of PFTs biomass
In addition to providing estimates of phytoplankton size structure

(i.e. micro%, nano% and pico%), the approach described by Hirata
et al. (2011b) also yields estimates of the relative biomass of six
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phytoplankton functional types from [Chl-a]. We found good agree-
ment between relative biomass predicted by the Hirata et al. (2011b)
model and those derived from DPA analysis of HPLC data from the
Oceanus cruise and Line P data archive (Fig. 8). Despite a few outliers,
the model prediction encapsulated nearly all of the DPA-based esti-
mates to within± 15%. Estimates of low biomass groups including
chlorophyte and pico-eukaryotes deviated from pigment-based frac-
tional contributions more than the other groups. Overall, we found that
79% of the variance in the relative biomass of diatoms derived from
DPA was explained by the [Chl-a]-based model of Hirata et al. (2011b)
(RMSE = 0.19, see Table 1).

Going further, we improved the regional coefficients of these
polynomial models to better fit the NP pigment dataset. Table 2 pre-
sented the increasing performance estimated from the regional model
and Table 3 showed the improved regional coefficients. Most of the r2
of the PFTS were increased to> 0.7, and the all the RMSE were smaller
than 0.06.

3.2. Satellite validation on chlorophyll-a

Given the accuracy of underway [Chl-a] estimates(r2= 0.95;
Fig. 3), we used these high spatial resolution data for satellite
matchups, to increase data coverage (shown in Fig. 9). This comparison
showed reasonable agreement between in situ and satellite-derived
[Chl-a] estimates, with r2 of 77% and RMSE of 0.21. However, the
slope of 0.86 implied underestimation of current satellite model relative
to in situ observations. Moreover, the results show that many of the
satellite-derived Chl a measurements fall outside of the± 15% band
from the 1:1 line. Based on our error propagation exercise (see Section
2.5), this level of uncertainty in [Chl-a] would lead to an error of
around 30% in PSCs/PFTs estimates. Thus, while the satellites appear to
capture a large-scale regional trends in [Chl-a], significant errors in
PSCs/PFTs may result from satellite Chla observations.

4. Discussion

Our work contributes to the growing application of optical mea-
surements quantifying PSCs/PFTs in the ocean. In a relatively recent
review, Brewin et al. (2011) compared PSCs and PFTs estimates from
nine satellite-based bio-optical models against HPLC-based oceanic
field measurements. This study focused on dominant phytoplankton
groups, with the majority of data from Atlantic Ocean, and almost no
observations from the North Pacific. The results showed that a [Chl-a]-
based approach provided slightly better estimation of PSCs than other
methods. Our study broadens the scope of this comparison by evalu-
ating the ability of ship-board IOP measurements to yield both PSCs and
PFTs estimates in the Subarctic Pacific Ocean. Direct ship-board mea-
surements of IOPs circumvent uncertainties from atmospheric correc-
tion associated with satellite-based observations, and the largest source
of potential error thus results from uncertainties in the optical models
used to estimate PSCs/PFTs. Our new field observations provide an
opportunity to evaluate the performance of four different algorithms for
estimating PFTs in the Subarctic Pacific. To our knowledge, there have
been no prior studies that have focused on this ocean region using
optical properties to estimate PSCs/PFTs. Our work demonstrates that
the simplest of the four algorithms, based only on total [Chl-a], is able
to reasonably reproduce the size structure (micro%, nano% and pico%)
of phytoplankton assemblages, and the relative biomass of major
taxonomic groups. This provides significant new capabilities to examine
the spatial and temporal patterns in phytoplankton group biomass in
the Subarctic Pacific.

Fig. 4. Spectra of filter pad aph* (thin line) and AC-s-derived underway aph* (symbols with error bar) measured at a) stn02; b) stn03; c) stn13; d) stn15.

Fig. 5. Measurements of Chl-a concentration (a); bbp coefficients from BB3
measurements at three wavelengths (b); and derived wavelength-dependence of
bbp (ɳ) (c) along a short portion of the Line P cruise track from latitude 48.86°,
longitude − 129.23° to latitude 48.97° longitude − 130.67°.
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4.1. Uncertainties of DPA approach

One of the main contributions of our study is the direct comparison
of PSCs values calculated from four phytoplankton size algorithms to
values derived from discrete HPLC pigment analysis. In examining the
results of four comparisons, it is important to understand several po-
tential limitations of the DPA approach for estimating phytoplankton
size distributions. Prior studies have suggested that DPA may not reflect
true size information because some phytoplankton functional groups
span more than one size class (Hirata et al., 2009, 2008; Ras et al.,

2008). For example, some diatom species (e.g., Thalassiosira pseudonana
(Mock et al., 2008)) fall into the nano-phytoplankton, rather than the
micro-phytoplankton, size class. Moreover, some diagnostic pigments
are shared by several phytoplankton groups (Hirata et al., 2011b). For
example, fucoxanthin (fuco), which is considered as a diagnostic pig-
ment for diatoms, is also produced in significant quantities by other
phytoplankton groups such as Prymnesiophytes. Further, different
light/nutrient conditions will change cellular pigment concentrations
and ratios (Obayashi et al., 2001). All of these factors increase un-
certainties associated with categorizing the phytoplankton size

Fig. 6. HPLC-based estimates of PSCs versus estimates derived using, the Chl-a abundance approach, n= 55 (Hirata et al., 2011b)), panels (a–c); three end-member
spectral decomposition approach (3 PSCs), n= 48 (Zhang et al., 2013), panels d - f; two end member spectral fitting approach (2 PSCs), n= 46 (Zhang et al., 2015),
panels g - i; and bbp slope approach, n= 57 (Kostadinov et al., 2009), panels j - l. RMSE is the root mean square error.

Fig. 7. The relationship between measured [Chl-a] and micro% (panel a), nano% (panel b) and pico% (panel c) from cruises conducted in 2017. Data points with
error bars ( ± std. dev.) show direct field measurements, while the dashed line and grey patch show the predicted value and± 15% error band of the Hirata et al.
(2011b) model. Different symbols denote separate cruises, with LAP and LIP denoting La Perouse and Line P, respectively.
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distributions by pigment analysis. However, DPA is still considered the
most efficient and effective current approach to classify phytoplankton
taxonomy biomass based on historical pigment measurements (Hirata
et al., 2011b).

In addition, we compared DPA with CHEMTAX estimated micro%,
and found that both produced similar trends of micro% but with much
lower values (data not shown). The apparent discrepancy may result
from the sensitivity of the CHEMTAX results to the initial starting
pigment matrix used in the iterative calculations. In our analysis, we
used a single starting pigment matrix, derived from Table 5 in Lee et al.
(2011). However, given that we transected a number of distinct

oceanographic regimes (e.g. low productivity HNLC vs. high pro-
ductivity coastal upwelling), the analysis would likely have needed a
number of different starting pigment matrices to produce the best re-
sults. Moreover, the CHEMTAX and DPA estimate different phyto-
plankton classes, so that those two methods cannot be directly com-
pared. We thus chose to focus on DPA analysis, which compares more
directly with the work of Hirata et al. (2011b) and others.

Additional measurements of size-fractionated [Chl-a] can also be
used to provide a simple and relatively unambiguous estimate of phy-
toplankton size structure. Our results (Fig. 7) indicate that the Hirata
et al. (2011b) model is able to capture trends in phytoplankton size
class biomass. In future work, simultaneous deployment of single-cell
imaging systems such as FlowCam could be employed to obtain more
nuanced estimates of phytoplankton assemblage size structure, to fur-
ther improve algorithm validation.

Our assessment of the potential sensitivity of the DPA approach to
the uncertainties in input pigment composition show that 5% varia-
bility in input pigment concentrations produces errors of 5%, 7%, and
10% for micro%, nano% and pico% estimates, respectively. Increasing
the magnitude of pigment variation to 15% yields uncertainties of 20%,
25% and 30% for micro%, nano% and pico%, respectively. The pico%
estimation is least robust because the relative biomass of this group in
our study region never exceeded ~ 50% of the total [Chl-a]. Results
from our error propagation model imply that the model error from [Chl-
a] based approach is acceptable since HPLC and DPA measurements
produce at least 5% error in PSCs.

Fig. 8. [Chl-a]-based estimates of phytoplankton group biomass. Symbols represent the estimates based on DPA analysis (DPA model in Table 1) of discrete HPLC
samples collected from both 2007–2011 Line P (white points) and 2016 Oceanus (black points), n= 108. Grey solid lines are polynomial model from [Chl-a] based
model in Table 1). Dashed lines are improved NP model derived from region-specific tuning of algorithm coefficients (Table 3) and grey areas represent the± 15%
confidence interval of regionally-tuned polynomial model.

Table 2
Statistics of [Chl-a]-based model estimations of phytoplankton taxonomy.

Phytoplankton Groups r2 RMSE* Improved r2 Improved RMSE*

Micro% 0.86 0.059 0.86 0.044
Nano% 0.30 0.08 0.76 0.052
Pico% 0.70 0.095 0.80 0.047
Diatom% 0.86 0.055 0.86 0.045
Dinoflagellat% 0.29 0.112 0.50 0.042
Chlorophyte% 0.20 0.069 0.30 0.030
Prymnesiophte% 0.30 0.303 0.72 0.054
Prokaryotes% 0.32 0.061 0.45 0.055
Pico-eukaryotes% 0.50 0.117 0.74 0.037

*RMSE is the root mean square between DPA derived and [Chl-a] based PFTs/
PSCs.
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Another source of uncertainty in using the model of Hirata et al.
(2011b) is the assumption that the seven diagnostic pigments (Σ DP),
weighted by an empirical regression, sum to total [Chl-a] (Uitz et al.,
2006; Vidussi et al., 2001). In our analysis, we found that Σ DP values
from the HPLC pigment analyses in the Subarctic North Pacific were
lower than [Chl-a] measured by HPLC analysis. However, normalizing
the biomass of each group by Σ DP decreases the absolute discrepancy
between Σ DP and total [Chl-a], and does not affect estimates of
phytoplankton taxonomic biomass by DPA (Fig. 8) (Hirata et al.,
2011b). Our results (Table 3) show that further improvements can be
achieved by specifically tuning the DPA model to the Subarctic Pacific.
For example, despite being one of the few taxonomic groups with a
unique diagnostic pigment (allo), cryptophytes were not included in the
Hirata et al. (2011b) algorithm due to low allo concentrations in their
dataset. However, microscopy data indicates cryptophytes are abun-
dant in many of the coastal samples from the Line P archive. We found
that the use of regionally derived coefficients for the model significantly
increased its predictive power over that derived from the global study

of Hirata et al. This result supports the development of regionally-tuned
versions of the Hirata et al. (2011b) model.

4.2. Comparisons between 4 algorithms on phytoplankton taxonomy

We found clear differences in the ability of the four algorithms (Chl-
a based, two end-member spectral fitting, three member spectral de-
composition and bbp-slope) to estimate PSCs/PFTs. The poorest results
were obtained with the bbp slope algorithm, and there are three po-
tential reasons for this result. First, the bbp slope is calculated from only
three wavelengths, and is thus expected to have significant uncertainty,
since the slope is highly sensitive to any of the three data points which
are required (as a minimum) for the exponential slope regression. The
presence of small bubbles near one or more of the detectors could thus
exert significant influence on the resulting slope estimates. Secondly,
Kostadinov et al. (2009) constructed the look-up table based on satellite
measuring channels with rather narrow band widths ( ± 10 nm) and
short bands span (490, 510, 550 nm), while our BB3 measurements
were made using a 20 nm band width and long bands span (470, 532,
650 nm). Wide band width reduces variability in the measurements and
long band (eg. 650 nm) produces weak signal, those will act to increase
noise in the resulting back scatter data in our case, likely influencing
the derived wavelength dependence. A further potential for the poor
performance of the back-scatter slope approach is the fact that esti-
mates of bbp slope and particle size distributions (PSD) are based on Mie
theory, which assumes normally distributed homogeneous particles.
With this approach, the bbp signals are calculated as the integral of
scattering by phytoplankton cells only. However, it is likely that NAPs
and various mineral phases (e.g. calcite) contribute significantly to the
bbp signal in coastal regions of the Subarctic Pacific, and thus cannot be
neglected in the PSD estimation. For instance, the presence of calcified
coccolithophores has been documented in a number of Subarctic re-
gions (Beaufort et al., 2008; Peterson et al., 2007), and these cells
would have a strong backscatter signal that would not be accounted for
using the Mie theory approach. Coccolithophores are commonly ob-
served throughout the Subarctic Pacific during summer, and we did see
evidence for calcite in surface waters based on remote sensing ob-
servations from the AquaModis sensor (data not shown).

The two end-member spectrum fitting approach also has potential
limitations. For example, shifts in phytoplankton pigment ratios and
cell sizes (Obayashi et al., 2001) in response to light and nutrient
variability could alter absorption spectra, complicating the choice of

Table 3
Coefficients and formulas for global (G) and regional North Pacific (NP) [Chl-a] based approach. Values for the global coefficients are derived from Hirata et al.
(2011b), while regional coefficients were derived from a least-square fit to the data collected in this study.

PSCs/PFTs Chl-a based approacha Tb A0 A1 A2 A3 A4 A5 A6

Micro-plankton + + −a a x a[ 0 exp ( 1 2)] 1 Gc 0.912 − 2.733 0.400
NPd 1.172 − 2.423 − 0.035

Diatom + + −a a x a[ 0 exp ( 1 2)] 1 G 1.327 − 3.983 0.195
NP 1.317 − 2.388 0.129

Dinoflagellate Micro-Diatom
Nano-plankton 1-Micro-Nano
Chlorophyte +a x a(a0/y)exp[( 1 2) ]2 G 0.249 − 1.2621 − 0.552

NP 1.112 − 0.418 − 2.290
Prymnesio-phytes Nano-Chlorophyte
Pico-plankton − + + + +−a a x a a x a[ 0 exp( 1 2)] 3 41 G 0.153 1.031 − 1.558 − 1.860 3.0

NP − 0.061 − 0.112 − 1.293 0.503 4.947
Prokaryotes ⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡
⎣

⎤
⎦

+ + ++ a x a x aexp 4 5 6
a
a a x a

a

0
1

y
2( 3)2

12
2

G 0.007 0.616 − 19.519 − 1.86 0.103 − 0.119 0.0626
NP − 0.253 − 8.154 − 17.3 1.214 − 0.02 0.004 0.039

Pico-eukaryotes Pico-Prokaryotes

a x:log10(Chl-a);y:Chl-a
b Type of model.
c Global
d North Pacific

Fig. 9. Comparison between underway ship-board and satellite derived [Chl-a],
grey area showed the± 15% of the 1:1line.
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end-members for estimating PSCs. The separation of aph and aNAP (Eqs.
4–6) is a fundamental step of the spectrum fitting approach. In low
productivity open ocean waters, the shape of aNAP is relatively well
constrained (Zhang et al., 2013). In contrast, the higher biomass of
suspended particulate matter in coastal waters may complicate the
determination of aNAP, and thus the separation of algal and non-algal
absorption signatures. In the case of the three end-member spectral
decomposition approach, the use of a uniform wavelength-dependence
for aCDOM could be problematic in a highly dynamics region, such as the
coastal NAP, with significant variability in nutrient levels, productivity
and dissolved organic matter.

Given the uncertainties in the bbp slope and spectrum fitting algo-
rithms, and because the [Chl-a] algorithm yielded the good agreement
with HPLC-derived PSCs values (Fig. 6), HPLC-derived PFTs (Fig. 8) and
size fractioned [Chl-a] PSCs (Fig. 7), we argue for use of the [Chl-a]
algorithm in future studies. This algorithm is mathematically simple,
requiring significantly less computation than the non-linear spectrum
fitting approach, and it also provides information on the relative bio-
mass of different phytoplankton groups (Hirata et al., 2011b). Indeed,
we found that the Hirata et al. (2011b) algorithm performed well in
reconstructing phytoplankton community composition measured by
HPLC pigment analysis. This was particularly true for highly abundant
groups, such as diatoms and prymnesiophytes, which are important to
the productivity and biogeochemical cycles of the Subarctic Pacific
(Peña and Varela, 2007).

Despite the good performance of the Hirata et al. (2011b) algorithm
in our data set, there are several potential caveats to consider in the
application of this model. First, it is important to note that the ro-
bustness of the [Chl-a] based approach diminishes beyond 10mg Chl-a
m-3. Model simulations of polynomial functions relating community
structure to trophic level in Hirata et al. (2011b) (indexed by [Chl-a])
show significant errors due to polynomial swing. More validations be-
yond this [Chl-a] value in the field will likely help to improve the fit.
Additional validations with taxonomic estimations based on micro-
scopy (Peña and Varela, 2007) or 18 s rRNA (Moon-van der Staay et al.,
2000) would also be useful. In applying such approaches, however, it
important to move beyond simple abundance estimates, incorporating
information on cell sizes to yield estimates of relative biomass con-
tributions of different groups. In this respect, it is important to note that
the classification of phytoplankton into discrete groups, micro%, nano
% and pico%, do not provide information on the full continuous size
spectrum present in surface ocean waters. Further, the [Chl-a] approach
is subject to variability resulting from changes in cellular Chl-a quotas
or C: Chl-a ratios. In our recent work, for example, we documented
significant variability in C: Chl-a ratios across the Subarctic Pacific,
with values ranging from 50 to 400 (Burt et al., 2018). This variability
appears to be driven primarily by light intensity and nutrient limitation,
and implies a decoupling between [Chl-a] and the biomass of various
plankton groups.

4.3. Conclusions and Future directions

Our results show that underway measurements of [Chl-a] can yield
high-resolution estimates of phytoplankton biomass, size distribution,
and community composition throughout the Subarctic Pacific Ocean.
Such measurements can be used to quantify the biomass of important
phytoplankton groups like diatoms, prokaryotes and prymnesiophytes
within uncertainties of± 15% after applying regional coefficients. We
also validated PSCs estimations against size-fractioned [Chl-a] mea-
surements (Fig. 7). Looking forward, we suggest that this approach can
be applied to satellite-derived [Chl-a] to examine changes in phyto-
plankton PSCs/PFTs in the Subarctic Pacific over large spatial and
temporal scales. This work will, however, require continued improve-
ment of satellite [Chl-a] estimates. At present, satellite products in the
Subarctic Pacific contain uncertainties due to an uneven distribution in
field-based validation samples. In addition, current satellite-derived

[Chl-a] values calculated using the Ocean Color OCI algorithm (O’Reilly
et al., 2000; https://oceancolor.gsfc.nasa.gov/reprocessing/r2009/
ocv6) show an uncertainty> 15% against in situ [Chl-a] in this re-
gion (Fig. 9). This uncertainty will cause at least 20% of error in micro
% and more than 30% of error in pico% estimation. More work is thus
needed before PSCs/PFTs can be derived with confidence from remote
sensing observations. Continued deployment of autonomous ship-board
optical sensors, such as the system described here, will expand the
database available for the improvement and regional tuning of satellite
products, leading to improved estimates phytoplankton size class and
functional type biomass over synoptic scales. Such information will be
critical to better understanding marine ecological response to short-
term environmental perturbations, including sporadic iron fertilization
events, and climate forcing on various time-scales, from El Nino cycles
to decadal-scale warming and acidification.

Acknowledgements

We thank the officers and crew of the CCGS John P. Tully and R/V
Oceanus for their help during the cruises. This work was supported by
China Scholarship Council (CSC201506260127) and by the Natural
Sciences and Engineering Research Council of Canada. In addition, we
appreciated the fund from the State Key Program of National Natural
Science of China (Grant No. 41530960) and the Chinese Polar
Environment Comprehensive Investigation & Assessment Programmes
(Grant no. CHINARE2017-02-04).

References

Aiken, J., Hardman-Mountford, N.J., Barlow, R., Fishwick, J., Hirata, T., Smyth, T., 2008.
Functional links between bioenergetics and bio-optical traits of phytoplankton
taxonomic groups: an overarching hypothesis with applications for ocean colour
remote sensing. J. Plankton Res. 30, 165–181. http://dx.doi.org/10.1093/plankt/
fbm098.

Alvain, S., Moulin, C., Dandonneau, Y., Bréon, F.M., 2005. Remote sensing of phyto-
plankton groups in case 1 waters from global SeaWiFS imagery. Deep. Res. Part I
Oceanogr. Res. Pap. 52, 1989–2004. http://dx.doi.org/10.1016/j.dsr.2005.06.015.

Armstrong, R.A., Lee, C., Hedges, J.I., Honjo, S., Wakeham, S.G., 2002. A new, me-
chanistic model for organic carbon fluxes in the ocean based on the quantitative
association of POC with ballast minerals. Deep. Res Part II 49, 219–236.

Beaufort, L., Couapel, M., Buchet, N., Claustre, H., Goyet, C., 2008. Calcite production by
coccolithophores in the south east Pacific Ocean. Biogeosciences 5, 1101–1117.
http://dx.doi.org/10.5194/bg-5-1101-2008.

Bélanger, S., Cizmeli, S.A., Ehn, J., Matsuoka, A., Doxaran, D., Hooker, S., Babin, M.,
2013. Light absorption and partitioning in Arctic Ocean surface waters: impact of
multiyear ice melting. Biogeosciences 10, 6433–6452. http://dx.doi.org/10.5194/bg-
10-6433-2013.

Booth, B.C., Lewin, J., Postel, J.R., 1993. Temporal variation in the structure of auto-
trophic and heterotrophic communities in the sub-arctic pacific. Prog. Oceanogr. 32,
57–99. http://dx.doi.org/10.1016/0079-6611(93)90009-3.

Bouman, H., Platt, T., Sathyendranath, S., Stuart, V., 2005. Dependence of light-saturated
photosynthesis on temperature and community structure. Deep. Res. Part I Oceanogr.
Res. Pap. 52, 1284–1299. http://dx.doi.org/10.1016/j.dsr.2005.01.008.

Brewin, R.J.W., Hardman-Mountford, N.J., Lavender, S.J., Raitsos, D.E., Hirata, T., Uitz,
J., Devred, E., Bricaud, A., Ciotti, A., Gentili, B., 2011. An intercomparison of bio-
optical techniques for detecting dominant phytoplankton size class from satellite
remote sensing. Remote Sens. Environ. 115, 325–339. http://dx.doi.org/10.1016/j.
rse.2010.09.004.

Bricaud, A., Claustre, H., Ras, J., Oubelkheir, K., 2004. Natural variability of phyto-
planktonic absorption in oceanic waters: influence of the size structure of algal po-
pulations. J. Geophys. Res. Ocean. 109, 1–12. http://dx.doi.org/10.1029/
2004JC002419.

Bricaud, A., Stramski, D., 1990. Spectral absorption coefficients of living phytoplankton
and nonalgal biogenous matter: a comparison between the Peru upwelling area and
the Sargasso Sea. Limnol. Oceanogr. 35, 562–582. http://dx.doi.org/10.4319/lo.
1990.35.3.0562.

Buesseler, K.O., 1998. The decoupling of production and particle export in the surface
ocean. Glob. Biogeochem. Cycles 12, 297–310. http://dx.doi.org/10.1029/
97GB03366.

Burt, J.B., Westberry, T.K., Behrenfeld, M.J., Zeng, Z., Izett, R., Tortell, P.D., 2018.
Carbon: chlorophyll ratios and net primary productivity of Subarctic Pacific surface
waters derived from autonomous shipboard sensors. Glob. Biogeochem. Cycles 32,
267–288. http://dx.doi.org/10.1002/2017GB005783.

Caddy, J.F., Refk, R., Do-Chi, T., 1995. Productivity estimates for the Mediterranean:
evidence of accelerating ecological change. Ocean Coast. Manag. 26, 1–18. http://dx.
doi.org/10.1016/0964-5691(95)00015-T.

Ciotti, A.M., Lewis, M.R., Cullen, J.J., 2002. Assessment of the relationships between

C. Zeng et al. Deep-Sea Research Part I 136 (2018) 107–118

117

https://oceancolor.gsfc.nasa.gov/reprocessing/r2009/ocv6
https://oceancolor.gsfc.nasa.gov/reprocessing/r2009/ocv6
http://dx.doi.org/10.1093/plankt/fbm098
http://dx.doi.org/10.1093/plankt/fbm098
http://dx.doi.org/10.1016/j.dsr.2005.06.015
http://refhub.elsevier.com/S0967-0637(17)30347-3/sbref3
http://refhub.elsevier.com/S0967-0637(17)30347-3/sbref3
http://refhub.elsevier.com/S0967-0637(17)30347-3/sbref3
http://dx.doi.org/10.5194/bg-5-1101-2008
http://dx.doi.org/10.5194/bg-10-6433-2013
http://dx.doi.org/10.5194/bg-10-6433-2013
http://dx.doi.org/10.1016/0079-6611(93)90009-3
http://dx.doi.org/10.1016/j.dsr.2005.01.008
http://dx.doi.org/10.1016/j.rse.2010.09.004
http://dx.doi.org/10.1016/j.rse.2010.09.004
http://dx.doi.org/10.1029/2004JC002419
http://dx.doi.org/10.1029/2004JC002419
http://dx.doi.org/10.4319/lo.1990.35.3.0562
http://dx.doi.org/10.4319/lo.1990.35.3.0562
http://dx.doi.org/10.1029/97GB03366
http://dx.doi.org/10.1029/97GB03366
http://dx.doi.org/10.1002/2017GB005783
http://dx.doi.org/10.1016/0964-5691(95)00015-T
http://dx.doi.org/10.1016/0964-5691(95)00015-T


dominant cell size in natural phytoplankton communities and the spectral shape of
the absorption coefficient. Limnol. Oceanogr. 47, 404–417. http://dx.doi.org/10.
4319/lo.2002.47.2.0404.

Dall’Olmo, G., Boss, E., Behrenfeld, M.J., Westberry, T.K., 2012. Particualte optical
scattering coefficents along an Atlantic meridional transect. Opt. Express 20, 1–20.
http://dx.doi.org/10.1029/2004GB002299.

Francois, R., Honjo, S., Krishfield, R., Manganini, S., 2002. Factors controlling the flux of
organic carbon to the bathypelagic zone of the ocean. Glob. Biogeochem. Cycles 16,
1087. http://dx.doi.org/10.1029/2001gb001722.

Harrison, P.J., Boyd, P.W., Varela, D.E., Takeda, S., Shiomoto, A., Odate, T., 1999.
Comparison of factors controlling phytoplankton productivity in the NE and NW
subarctic Pacific gyres. Prog. Oceanogr. 43, 205–234. http://dx.doi.org/10.1016/
S0079-6611(99)00015-4.

Harrison, P.J., Whitney, F.A., Tsuda, A., Saito, H., Tadokoro, K., 2004. Nutrient and
plankton dynamics in the NE and NW gyres of the subarctic Pacific Ocean. J.
Oceanogr. 60, 93–117. http://dx.doi.org/10.1023/B:JOCE.0000038321.57391.2a.

Hirata, T., Aiken, J., Hardman-Mountford, N., Smyth, T.J., Barlow, R.G., 2008. An ab-
sorption model to determine phytoplankton size classes from satellite ocean colour.
Remote Sens. Environ. 112, 3153–3159. http://dx.doi.org/10.1016/j.rse.2008.03.
011.

Hirata, T., Hardman-Mountford, N.J., Barlow, R., Lamont, T., Brewin, R., Smyth, T.,
Aiken, J., 2009. An inherent optical property approach to the estimation of size-
specific photosynthetic rates in eastern boundary upwelling zones from satellite
ocean colour: an initial assessment. Prog. Oceanogr. 83, 393–397. http://dx.doi.org/
10.1016/j.pocean.2009.07.019.

Hirata, T., Hardman-Mountford, N.J., Brewin, R.J.W., Aiken, J., Barlow, R., Suzuki, K.,
Isada, T., Howell, E., Hashioka, T., Noguchi-Aita, M., Yamanaka, Y., 2011a. Synoptic
relationships between surface Chlorophyll-a and diagnostic pigments specific to
phytoplankton functional types. Biogeosciences 8, 311–327. http://dx.doi.org/10.
5194/bg-8-311-2011.

Hirata, T., Hardman-Mountford, N.J., Brewin, R.J.W., Aiken, J., Barlow, R., Suzuki, K.,
Isada, T., Howell, E., Hashioka, T., Noguchi-Aita, M., Yamanaka, Y., 2011b. Synoptic
relationships between surface chlorophyll-a and diagnostic pigments specific to
phytoplankton functional types. Biogeosciences 8, 311–327. http://dx.doi.org/10.
5194/bg-8-311-2011.

Klaas, C., Archer, D.E., 2002. Association of sinking organic matter with various types of
mineral ballast in the deep sea: implications for the rain ratio. Glob. Biogeochem.
Cycles 16, 1–14. http://dx.doi.org/10.1029/2001GB001765.

Kostadinov, T.S., Siegel, D.A., Maritorena, S., 2009. Retrieval of the particle size dis-
tribution from satellite ocean color observations. J. Geophys. Res. Ocean. 114, 1–22.
http://dx.doi.org/10.1029/2009JC005303.

Lee, Y., Park, M., Kim, Y., Kim, S., Kang, C., 2011. Application of photosynthetic pitment
analysis using a HPLC and CHEMTAX program to studies of phytplankton community
composition. J. Korean Soc. Oceanogr. 16, 117–124.

Lin, J., Cao, W., Zhou, W., Sun, Z., Xu, Z., Wang, G., Hu, S., 2014. Novel method for
quantifying the cell size of marine phytoplankton based on optical measurements.
Opt. Express 22, 10467. http://dx.doi.org/10.1364/OE.22.010467.

Mackey, M.D., Mackey, D.J., Higgins, H.W., Wright, S.W., 1996. CHEMTAX - A program
for estimating class abundances from chemical markers: application to HPLC mea-
surements of phytoplankton. Mar. Ecol. Prog. Ser. 144, 265–283. http://dx.doi.org/
10.3354/meps144265.

Michaels, A.F.A.M.W.S., 1988. Primary production, sinking fluxes and the microbial food
web. Deep. Res. 35, 473–490.

Mitchell, B.G., 1990. Algorithms for determining the absorption coefficient of aquatic
particulates using the quantitative filter technique (QFT). Ocean Opt. 1302, 137–148.

Mock, T., Samanta, M.P., Iverson, V., Berthiaume, C., Robison, M., Holtermann, K.,
Durkin, C., Bondurant, S.S., Richmond, K., Rodesch, M., Kallas, T., Huttlin, E.L.,
Cerrina, F., Sussman, M.R., Armbrust, E.V., 2008. Whole-genome expression profiling
of the marine diatom Thalassiosira pseudonana identifies genes involved in silicon
bioprocesses. Proc. Natl. Acad. Sci. Usa. 105, 1579–1584. http://dx.doi.org/10.
1073/pnas.0707946105.

Moon-van der Staay, S.Y., van der Staay, G.W.M., Guillou, L., Vaulot, D., Claustre, H.,
Medlin, L.K., 2000. Abundance and diversity of prymnesiophytes in the picoplankton
community from the equatorial Pacific Ocean inferred from 18S rDNA sequences.
Limnol. Oceanogr. 45, 98–109. http://dx.doi.org/10.4319/lo.2000.45.1.0098.

Nelson, N.B., Prezelin, B.B., Bidigare, R.R., 1993. Phytoplankton light absorption and the
package effect in California coastal waters. Mar. Ecol. Prog. Ser. 94, 217–227. http://
dx.doi.org/10.3354/meps094217.

Nemcek, N., Pena, M.A., 2014. Institute of Ocean sciences protocols for phytoplankton
pigment analysis by HPLC. Can. Tech. Report. Fish. Aquat. Sci. 3117.

O’Reilly, J.E., Maritorena, S., O’Brien, M.C., Siegel, D. a., Toole, D., Menzies, D., Smith,
R.C., Mueller, J.L., Mitchell, B.G., Kahru, M., Chavez, F.P., Strutton, P., Cota, G.F.,
Hooker, S.B., Mcclain, C.R., Carder, K.L., Müller-Karger, F.E., Harding, L., Magnuson,
A., Phinney, D., Moore, G.F., Aiken, J., Arrigo, K.R., Letelier, R., Culver, M., 2000.
SeaWiFS Postlaunch Calibration and validation analyses, Part 3. SeaWiFS Postlaunch
tech. Rep. Ser. 11 (51pp).

Obayashi, Y., Tanoue, E., Suzuki, K., Handa, N., Nojiri, Y., Wong, C.S., 2001. Spatial and
temporal variabilities of phytoplankton community structure in the northern North
Pacific as determined by phytoplankton pigments. Deep. Res. Part I-Oceanogr. Res.
Pap. 48, 439–469. http://dx.doi.org/10.1016/S0967-0637(00)00036-4.

Organelli, E., Bricaud, A., Antoine, D., Uitz, J., 2013. Multivariate approach for the re-
trieval of phytoplankton size structure from measured light absorption spectra in the
Mediterranean Sea (BOUSSOLE site)52.

Parsons, T.R., Lalli, C.M., 2002. Jellyfish population explosions: Revisiting a hypothesis of
possible causes. Mer. https://doi.org/111-121.

Pegau, S., Zaneveld, J.R. V, Mitchell, B.G., Mueller, J.L., Kahru, M., Wieland, J., Stramska,
M., 2002. Ocean optics protocols for satellite ocean color sensor validation, Revision
4, Volume IV: Inherent optical properties: instruments, characterizations, field
measurements and data analysis protocols. Ocean Color web page IV, 76.

Peña, M.A., Varela, D.E., 2007. Seasonal and interannual variability in phytoplankton and
nutrient dynamics along Line P in the NE subarctic Pacific. Prog. Oceanogr. 75,
200–222. http://dx.doi.org/10.1016/j.pocean.2007.08.009.

Peterson, T.D., Toews, H.N.J., Robinson, C.L.K., Harrison, P.J., 2007. Nutrient and phy-
toplankton dynamics in the Queen Charlotte Islands (Canada) during the summer
upwelling seasons of 2001–2002. J. Plankton Res. 29, 219–239. http://dx.doi.org/
10.1093/plankt/fbm010.

Platt, T., Bouman, H., Devred, E., Fuentes-Yaco, C., Sathyendranath, S., 2005. Physical
forcing and phytoplankton distributions. Sci. Mar. 69, 55–73. http://dx.doi.org/10.
3989/scimar.2005.69s155.

Platt, T., Denman, K., 1977. Organisation in the pelagic ecosystem. Helgoländer
Wissenschaftliche Meeresuntersuchungen 30, 575–581. 〈https://doi.org/10.1007/
BF02207862〉.

Ras, J., Claustre, H., Uitz, J., 2008. Spatial variability of phytoplankton pigment dis-
tributions in the Subtropical South Pacific Ocean: comparison between in situ and
predicted data. Biogeosciences 5, 353–369. http://dx.doi.org/10.5194/bgd-4-3409-
2007.

Roesler, C.S., Barnard, A.H., 2013. Optical proxy for phytoplankton biomass in the ab-
sence of photophysiology: rethinking the absorption line height. Methods Oceanogr.
7, 79–94. http://dx.doi.org/10.1016/j.mio.2013.12.003.

Siegenthaler, U., Sarmiento, J.L., 1993. Atmospheric carbon dioxide and the ocean.
Nature 365, 119–125. http://dx.doi.org/10.1038/365119a0.

Slade, W.H., Boss, E., Dall’olmo, G., Langner, M.R., Loftin, J., Behrenfeld, M.J., Roesler,
C., Westberry, T.K., 2010. Underway and moored methods for improving accuracy in
measurement of spectral particulate absorption and attenuation. J. Atmos. Ocean.
Technol. 27, 1733–1746. http://dx.doi.org/10.1175/2010JTECHO755.1.

Twardowski, M.S., Claustre, H., Freeman, S.A., Stramski, D., Huot, Y., 2007. Optical
backscattering properties of the “clearest” natural waters. Biogeosciences Discuss 4.
pp. 2441–2491. http://dx.doi.org/10.5194/bgd-4-2441-2007.

Uitz, J., Claustre, H., Morel, A., Hooker, S.B., 2006. Vertical distribution of phytoplankton
communities in open ocean: an assessment based on surface chlorophyll. J. Geophys.
Res. Ocean. 111. http://dx.doi.org/10.1029/2005JC003207.

Uitz, J.U., Huot, Y., Bruyant, F., Babin, M., Claustre, H., 2008. Relating phytoplankton
photophysiological properties to community structure on large scales. Limnol.
Oceanogr. 53, 614–630. http://dx.doi.org/10.4319/lo.2008.53.2.0614.

Van Heukelem, L., Thomas, C.S., 2001. Computer-assisted high-performance liquid
chromatography method development with applications to the isolation and analysis
of phytoplankton pigments. J. Chromatogr. A 910, 31–49. http://dx.doi.org/10.
1016/S0378-4347(00)00603-4.

Vidussi, F., Claustre, H., Manca, B.B., Luchetta, A., Marty, J.-C., 2001. Phytoplankton
pigment distribution in relation to upper thermocline circulation in the eastern
Mediterranean Sea during winter. J. Geophys. Res. Ocean. 106, 19939–19956.
http://dx.doi.org/10.1029/1999JC000308.

Waterbury, J.B., Watson, S.W., Guillard, R.R.L., Brand, L.E., 1979. Widespread occurance
of a unicellular, marine, planktonic, cyanobacterium. Nature.

Xi, H., Hieronymi, M., Röttgers, R., Krasemann, H., Qiu, Z., 2015. Hyperspectral differ-
entiation of phytoplankton taxonomic groups: a comparison between using remote
sensing reflectance and absorption spectra. Remote Sens. 7, 14781–14805. http://dx.
doi.org/10.3390/rs71114781.

Zhang, X., Huot, Y., Bricaud, A., Sosik, H.M., 2015. Inversion of spectral absorption
coefficients to infer phytoplankton size classes, chlorophyll concentration, and det-
rital matter. Appl. Opt. 54, 5805. http://dx.doi.org/10.1364/AO.54.005805.

Zhang, X., Huot, Y., Gray, D.J., Weidemann, A., Rhea, W.J., 2013. Biogeochemical origins
of particles obtained from the inversion of the volume scattering function and
spectral absorption in coastal waters. Biogeosciences 10, 6029–6043. http://dx.doi.
org/10.5194/bg-10-6029-2013.

Zubkov, M.V., Sleigh, M.A., Burkill, P.H., Leakey, R.J.G., 2000. Picoplankton community
structure on the Atlantic Meridional Transect: a comparison between seasons. Prog.
Oceanogr. 45, 369–386. http://dx.doi.org/10.1016/S0079-6611(00)00008-2.

Zubkov, M.V., Fuchs, B.M., Tarran, G.A., Burkill, P.H., Amann, R., 2003. High rate of
uptake of organic nitrogen compounds by Prochlorococcus cyanobacteria as a key to
their dominance in oligortrophic oceanic waters. Appl. Environ. Microbiol. 69,
1299–1304. http://dx.doi.org/10.1128/AEM.69.2.1299.

C. Zeng et al. Deep-Sea Research Part I 136 (2018) 107–118

118

http://dx.doi.org/10.4319/lo.2002.47.2.0404
http://dx.doi.org/10.4319/lo.2002.47.2.0404
http://dx.doi.org/10.1029/2004GB002299
http://dx.doi.org/10.1029/2001gb001722
http://dx.doi.org/10.1016/S0079-6611(99)00015-4
http://dx.doi.org/10.1016/S0079-6611(99)00015-4
http://dx.doi.org/10.1023/B:JOCE.0000038321.57391.2a
http://dx.doi.org/10.1016/j.rse.2008.03.011
http://dx.doi.org/10.1016/j.rse.2008.03.011
http://dx.doi.org/10.1016/j.pocean.2009.07.019
http://dx.doi.org/10.1016/j.pocean.2009.07.019
http://dx.doi.org/10.5194/bg-8-311-2011
http://dx.doi.org/10.5194/bg-8-311-2011
http://dx.doi.org/10.5194/bg-8-311-2011
http://dx.doi.org/10.5194/bg-8-311-2011
http://dx.doi.org/10.1029/2001GB001765
http://dx.doi.org/10.1029/2009JC005303
http://refhub.elsevier.com/S0967-0637(17)30347-3/sbref25
http://refhub.elsevier.com/S0967-0637(17)30347-3/sbref25
http://refhub.elsevier.com/S0967-0637(17)30347-3/sbref25
http://dx.doi.org/10.1364/OE.22.010467
http://dx.doi.org/10.3354/meps144265
http://dx.doi.org/10.3354/meps144265
http://refhub.elsevier.com/S0967-0637(17)30347-3/sbref28
http://refhub.elsevier.com/S0967-0637(17)30347-3/sbref28
http://refhub.elsevier.com/S0967-0637(17)30347-3/sbref29
http://refhub.elsevier.com/S0967-0637(17)30347-3/sbref29
http://dx.doi.org/10.1073/pnas.0707946105
http://dx.doi.org/10.1073/pnas.0707946105
http://dx.doi.org/10.4319/lo.2000.45.1.0098
http://dx.doi.org/10.3354/meps094217
http://dx.doi.org/10.3354/meps094217
http://refhub.elsevier.com/S0967-0637(17)30347-3/sbref33
http://refhub.elsevier.com/S0967-0637(17)30347-3/sbref33
http://refhub.elsevier.com/S0967-0637(17)30347-3/sbref34
http://refhub.elsevier.com/S0967-0637(17)30347-3/sbref34
http://refhub.elsevier.com/S0967-0637(17)30347-3/sbref34
http://refhub.elsevier.com/S0967-0637(17)30347-3/sbref34
http://refhub.elsevier.com/S0967-0637(17)30347-3/sbref34
http://refhub.elsevier.com/S0967-0637(17)30347-3/sbref34
http://dx.doi.org/10.1016/S0967-0637(00)00036-4
https://doi.org/111-121
http://dx.doi.org/10.1016/j.pocean.2007.08.009
http://dx.doi.org/10.1093/plankt/fbm010
http://dx.doi.org/10.1093/plankt/fbm010
http://dx.doi.org/10.3989/scimar.2005.69s155
http://dx.doi.org/10.3989/scimar.2005.69s155
https://doi.org/10.1007/BF02207862
https://doi.org/10.1007/BF02207862
http://dx.doi.org/10.5194/bgd-4-3409-2007
http://dx.doi.org/10.5194/bgd-4-3409-2007
http://dx.doi.org/10.1016/j.mio.2013.12.003
http://dx.doi.org/10.1038/365119a0
http://dx.doi.org/10.1175/2010JTECHO755.1
http://dx.doi.org/10.5194/bgd-4-2441-2007
http://dx.doi.org/10.1029/2005JC003207
http://dx.doi.org/10.4319/lo.2008.53.2.0614
http://dx.doi.org/10.1016/S0378-4347(00)00603-4
http://dx.doi.org/10.1016/S0378-4347(00)00603-4
http://dx.doi.org/10.1029/1999JC000308
http://refhub.elsevier.com/S0967-0637(17)30347-3/sbref48
http://refhub.elsevier.com/S0967-0637(17)30347-3/sbref48
http://dx.doi.org/10.3390/rs71114781
http://dx.doi.org/10.3390/rs71114781
http://dx.doi.org/10.1364/AO.54.005805
http://dx.doi.org/10.5194/bg-10-6029-2013
http://dx.doi.org/10.5194/bg-10-6029-2013
http://dx.doi.org/10.1016/S0079-6611(00)00008-2
http://dx.doi.org/10.1128/AEM.69.2.1299

	Optically-derived estimates of phytoplankton size class and taxonomic group biomass in the Eastern Subarctic Pacific Ocean
	Introduction
	Methods
	Underway optical measurements
	In situ Chl-a and aph measurements
	Underway Chl-a estimation
	Filter pad aph measurements
	HPLC measurements and diagnostic pigment analysis

	Optical estimates of phytoplankton functional groups
	Chl-a based approach
	Two end-member spectral fitting approach
	Three end-member spectral decomposition approach
	Backscatter slope approach

	Satellite matchups
	Error analysis

	Results
	Tuning and validation of the underway measurements
	PSCs estimation based on four different phytoplankton size estimation algorithms
	Estimation of PFTs biomass

	Satellite validation on chlorophyll-a

	Discussion
	Uncertainties of DPA approach
	Comparisons between 4 algorithms on phytoplankton taxonomy
	Conclusions and Future directions

	Acknowledgements
	References




