
ESIP NCPP Brief on cohort
study – A closer look at the
phases

Exploring Cloud backends for the new OGC Environmental
Retrieval API

By Steve Olson and Shane Mill
NOAA National Weather Service and NODD Collaborator

Agenda

1. Background
a. Data Silo Problem
b. OGC and Environmental Data Retrieval (EDR) API
c. ESIP NCPP Program

2. Goals and Objectives for cohort study
3. Phase 1 Key Findings and takeaways
4. Phase 1 Results
5. Demo
6. A Look Towards the Phase 2 Work
7. Questions

Data, Data, and more data … What do I do?

“Data-Silo” Issue

XML
IWXXM/
TSML

JSON

SFTP OpenDAP webpage Thredds

HDF5 csvBUFRGRIB NetCDF

So many
Systems &

Sources

covJSON

Data silos are isolated groups of data that stymie data
storage, discovery, and use

So
many
Formats

https://docs.google.com/presentation/d/1rZ5-xj2XRnUulRbUZd0HSLpz5aPtu_xM/edit
https://docs.google.com/presentation/d/1LWcKYIyMIcqeuDpUhP9sAf8oL8x7uoaN/edit

Silo’d services impact both users and providers
Impacts to users

• Requires users to post-process data
• Users may be forced to download more data then desired
• Users may be forced to download in a less than desirable format
• Insufficient metadata that describes the data
• Service doesn’t support machine to machine communications
• Insufficient notifications regarding new data … Leads to overloading of service due to

demand
Impacts to providers

• As cloud becomes more and more prevalent, there are costs to disseminate and store
data

• Typically less flexibility with these types of services
• Providers are forced to impose rate limiting controls to keep demand/needs in check

These types of services don’t lend themselves to FAIR principles

XML JSO
N

SFTP OpenD
AP

GIS Thred
ds

HDF
5

Metar
BUF
R

GRI
B NetCDFMany Different

Data
Formats:

Many Different Data
Systems and Sources:

EDR-API
Homogenizes
and
Integrates
the Data contained
in the Silos

XML

JSON

SFTPOpenDAP

GIS

Thredds

HDF5

text/TAC
BUFR

GRIB

NetCDF

“It provides a uniform internet interface and platform where disparate
data formats, systems, and sources are all integrated and combined into
web accessible structured endpoints

EDR-API Breaks Down the Data Silos

OGC Environmental Data Retrieval (EDR) API

EDR lowers the bar of entry for users, hiding away the complexities of
application software, data systems and data formats.

EDR-API Feature Types
Items

● Retrieve data for point/position identified by a name
rather than coordinates.

● http://data-api-c.mdl.nws.noaa.gov/OGC-EDR-
API/collections/KWBC_WAFSHZDS_BLENDED_CB_0P2
5/instances/00z/items/region_1

Locations

● Items Retrieve a feature by identifier. The coordinates
in the feature could be used to create an EDR query.
The feature could also be a previously stored query.
Compatible with OGC API - Features - Part 1: Core.

● http://data-api-c.mdl.nws.noaa.gov/OGC-EDR-
API/collections/KWBC_WAFSHZDS_BLENDED_CB_0P2
5/instances/00z/locations/region_1?f=GRIB&pa
rameter-name=cb_extent

EDR-API Features Demonstration

Locations:
http://data-api-c.mdl.nws.noaa.gov/OGC-EDR-API/collections/wwa_active_severe_weather_statement/locations/severe_weather_statement_KTWC_2022-09-
12T16:25:00-07:00?f=text/cap
http://data-api-c.mdl.nws.noaa.gov/OGC-EDR-API/collections/wwa_active_severe_weather_statement/locations/severe_weather_statement_KTWC_2022-09-
12T16:25:00-07:00?f=json

Watches, Warnings, Advisories disseminated as OGC EDR-API locations:

http://data-api-c.mdl.nws.noaa.gov/OGC-EDR-API/collections/wwa_active_severe_weather_statement/locations/severe_weather_statement_KTWC_2022-09-12T16:25:00-07:00?f=text/cap
http://data-api-c.mdl.nws.noaa.gov/OGC-EDR-API/collections/wwa_active_severe_weather_statement/locations/severe_weather_statement_KTWC_2022-09-12T16:25:00-07:00?f=json

EDR-API Query Types

Vertical Profiles
Polygon

Vertical Cross Section

Trajectory

Multi Point Collection
–> Multi Time

Series

Cube

EDR allows users to query and request a feature from METEOROLOGICAL SHAPES
(Position/Point, Multi-point, radius, area/polygons, Cubes, Trajectories, corridors and instance).

Area

Corridor

EDR-API Query Demonstrations

• Ability to query by a user defined polygon.
• Ability to change the color palette
• Ability to view multidimensionality of the

data (multiple times, multiple vertical
levels).

• Ability to add other base layers such as
land/sea borders.

• User pane allows user to construct their
EDR-API query.

• CoverageJSON is rendered in the browser,
but user is also given the ability to
download other formats such as GRIB,
NetCDF, and Cloud Optimized Geotiff.

ToolsUI Visualization of GRIB

ToolsUI Visualization of NetCDF

QGIS Visualization of COG

Visualiza(on with other tools:

EDR-API Query Demonstrations
User Interface Experience:

• Ability to query by a user defined corridor.
• Ability to change the color palette
• Ability to view multidimensionality of the

data (multiple times, multiple vertical
levels).

• Ability to add other base layers such as
land/sea borders.

• User pane allows user to construct their
EDR-API query.

• CoverageJSON is rendered in the browser,
but user is also given the ability to
download other formats such as NetCDF.

ESIP NCPP and the OGC EDR-API

● Early prototyping efforts in the NWS EDR API server implementation (EC2
instance) focused on the integration and homogenization of disparate data
systems, data sources and data formats, ways to automate that process, and
the discovery, dissemination and visualization of that data to users.

● A number of NOAA Line Offices (LOs) are now interested in exploring the use of
the OGC EDR API as a dissemination and visualization mechanism for their
applications.

● ESIP NOAA Cloud Pathfinder Program (NCPP) provided a perfect environment
for us to explore a cloud implementation for the new OGC Environmental Data
Retrieval (EDR) API

ESIP NCPP and the OGC EDR-API

Two main focal areas for study:

1. Explore and assess what an operational implementation of
the OGC EDR API could look like in the Cloud

2. Prototype a Cloud Native environment that connects OGC
geospatial APIs with NODD data. The goal is to assess
the most cost effective and performant EDR API
environment for the dissemination and visualization of
NODD datasets

ESIP NCPP and the OGC EDR-API

Several Phases for this work
● Phase 1 as multiple parts

1. Assess options for scalability and caching in a baseline serverless
environment

2. Connect EDR API with S3 NODD buckets of data to enhance user
experience

3. Expand autoscaling, explore CSP agnostics alternatives to CSP specific
toolings and assess options for supporting asynchronous processing and
responses

● Phase 2 is future work and will be described later in this presentation

Early Phase 1 Work – Establish baseline serverless configuration
that promoted operational needs (Introduce scalability, caching)

Goal : Enhance both frontend and backend aspects to our single server EDR API implementation

Front end Enhancements:

● Implement AWS CloudFront with caching behaviors. On a cache hit, the response is returned directly to the user
much quicker. On a cache miss, the request is forwarded to AWS API Gateway.

Back end Enhancements:

● Use AWS API Gateway which allows the API functionality to be separated into serverless functions (AWS Lambda).
Created AWS Lambda functions for each aspect of the EDR-API schema (root, api, conformance, collections,
instances, data queries). Within data queries, separate AWS Lambda functions were created for sampling geometry
types (position, radius, area, cube, trajectory, and corridor).

● Implement a centralized Dask Cluster using AWS ECS Fargate. A connection to a centralized Dask Cluster from
AWS Lambda facilitated horizontal scalability.

Single Server Architectural Design and workflow

Serverless Architectural Design and workflow
1. User accesses API through
CloudFront. On cache miss
request is directed to API
Gateway.
2. Bases on path, API Gateway
invokes a Lambda function.
3a, 4a, 5a: Lambda functions are
invoked, some of which return
static responses, some return
response based on S3 bucket
contents, some of which use
Dask to process data and return a
response to the user.
5b,5c,5d: For Lambda functions
that use Dask client, the
centralized Dask cluster based on
ECS Fargate is accessed using
the DNS name of the Network
Load balancer through the Dask
client within the invokated
Lambda function.

Fully annotated diagram: EDR AWS Architectural Diagram

https://drive.google.com/file/d/1KfA4okhUg_UaOqmaGN8HMPq9s0yYWZD1/view?usp=sharing

Summary of key findings and takeaways

1. For Deployment, AWS Cloudformation very useful in configuring/automating deployment
of AWS resources for EDR-API

2. On frontend, several lessons learned with AWS Cloudfront
a. Need caching behaviors that capture similar API requests
b. Need to limit AWS Cloudfront cache invalidations in order to control costs. More cost

effective way is to set the time to live (TTL) header on the cached objects through the
caching behaviors

c. Overall, AWS CloudFront had significant impact on performance on a cache hit. For
the National Water Model position query for one point at one time, a request to the
backend takes 11.28 s versus 53 ms for AWS CloudFront cache hit

Summary of key findings and takeaways (Cont’d)
3. On backend, there were several key takeaways

a. Use of AWS API Gateway promoted quick implementation of the OGC EDR-API specification
because of its ability to load an OpenAPI definition.

b. Use of AWS CloudFormation template allowed for automation and to directly tie EDR-API
endpoints to specific AWS Lambda functions within the AWS API Gateway

c. While AWS ParallelCluster supports a centralized Dask cluster, we were unable to connect to
the AWS ParallelCluster from a Dask client within an AWS Lambda function.

d. AWS Elastic Container Service (ECS) with Fargate was much better option.
e. Performance can be impacted through memory allocations at the AWS Lambda function level.

The key is right sizing memory by EDR-API endpoint.
f. Performance can also be impacted through CPU and memory allocations within the

Dask workers in AWS Fargate. The key is to balance the allocations for performance
and cost effectiveness.

a. AWS API Gateway has 30 sec timeout. This limited the type and size of successful EDR API
requests/responses

Testing methodology
1. Test 3 types of implementations

a. Server East - c5a.4xlarge (EC2), Serverless East and Serverless West
2. Dataset collections used during testing

a. National Water Model (NWM) and Global Forecast System (GFS) 1.0 degree model
3. Testing was done covering

a. Different dimension sizing for:
i. Spatial coverage, Vertical and Temporal ranges

b. With and without CloudFront
4. Testing of the load of 10, 50, 100, and 500 concurrent users
5. 34 total tests covering the different collections, sampling geometry types, and dimensional

coverage
6. Apache JMeter was used to perform load testing and capture metrics for different
7. levels of concurrent users and different timespans.

Key Findings of Test Results
1. Test results for NCPP Serverless East and NCPP Serverless West followed similar

distributions, although NCPP Serverless East was slightly faster overall (we should note
that testing occurred in Arlington, VA).

2. Both Serverless environments were responsive and consistent in the results once load was
increased to 50 concurrent users. Once concurrent users were increased to 100 concurrent
users, there was some degradation in performance. Once concurrent users were increased
to 500 users, we began to see some failed requests.

3. The Server environment was less consistent in performance, and truly suffered in
responsiveness once load was increased to 50 concurrent users and for larger data
queries. Overall, the Server environment saw worse overall performance compared to the
serverless environments.

Demonstration of this capability and what it
means

● Role of the EDR API User Interface
● OGC APIs as building blocks and connection with NODD
● EDR API is an example of one project meeting the

NOAA data strategy goals of leadership, open data,
capabilities, and collaboration

National Water Model Demo (AWS Serverless environment)

● When a request is made and CloudFront determines a cache hit or miss. On a miss, API
Gateway invokes the appropriate lambda function to make the query.

● Within the lambda function, the Dask client accesses the ECS Fargate Dask Cluster to optimize
the loading of the Zarr data chunks. Using Xarray, the data requested is selected and returned
to the user in CoverageJSON, which can be visualized in Leaflet.

Connecting EDR API with NODD Data: OGC API - Processes and
OGC API - EDR Integration: Wind Streams

● This demonstrates the ability to take the U and V components of the wind
from an EDR-API response and return wind streams using OGC API -
Processes based on user selections of geospatial area, time, and vertical
level.

Using OGC APIs as building Blocks - Chaining of Processes
OGC EDR API and Processes API Integra;on
Client

• With recent development updates to the
client, we are now able to chain processes
together, with the OGC EDR API as the
originating data source.

• In this example, a user selects an EDR-API
collection, a weather parameter, a
geometry, and a time range. The user can
conduct a summation of the data over a
time range using OGC API - Processes.

• Given that result, the user can then
conduct a threshold selection using OGC
API - Processes based on the previous
result.

Next Steps in our Phase 1 work

1. Focus on assessing and expanding frontend and backend
autoscaling approaches

2. Explore CSP agnostic alternatives to CSP specific toolings
(Work in progress)

3. Exploring direct access to data in a cloud optimized manner
(Work in progress)

4. Assess options for supporting asynchronous processing
and responses (Future work)

1. Assessing and expanding autoscaling approaches

Frontend Autoscaling
● We originally investigated the use of API Gateway invoking Lambda functions

(Serverless approach).
● We then investigated an alternative approach using an Application Load Balancer tied

to an autoscaling group for the “T” (General Purpose) class of ec2 instances (Server
Based approach).

Motivation
● We saw limitations with API Gateway (30 second timeout) and Lambda (Payload

response size).
● We wanted to compare the performance and cost of the two different approaches.

1. Assessing and expanding autoscaling approaches
(Cont’d)

Backend Autoscaling
● We originally investigated the use of ECS with Fargate (Serverless) to implement a Centralized

Dask Cluster (the scheduler and associated workers as ECS Tasks)
● We then investigated the use of ECS backed with EC2 (Server Based) Container Instances (ECS

tasks associated with EC2 instances rather than Fargate) to implement a centralized Dask
Cluster.

Motivation
● While Fargate performed well upfront, we wanted to evaluate cost/performance of alternative

approaches.
● Fargate does not support the connection to a Lustre FSx FileSystem, and we had a desire to test

performance of Lustre vs. EFS.
● The investigation of an EC2 Backed ECS Cluster moves us closer to a Cloud Agnostic Solution.

Key Findings/Takeaways from autoscaling approaches
investigation

1. Frontend
a. We found that using an Application Load Balancer tied to an

autoscaling group of EC2 instances overcame the limitations of API
Gateway (30 second timeout) and Lambda (6MB payload limit).

2. Backend
a. We found that cpu and memory allocations need to be sufficient for

performance but not over allocated to manage costs. This was the
case for both ECS Fargate and the EC2 Backed ECS Cluster.

Key Findings/Takeaways from autoscaling approaches
investigation (Cont’d)

Horizontal and Vertical Autoscaling of EDR API are impacted by the
backend storage choice (S3, EFS, Lustre)

Backend Autoscaling
a. We found that we were able to mount to a Lustre FSx file system

using the EC2 backed ECS Cluster, and found performance to be
faster than EFS and S3.

b. We found Lustre to be more predictable than S3 in terms of cost
because S3 GetObject costs can quickly accumulate while Lustre
costs are fixed.

Frontend: Next steps in autoscaling approaches investigation

● We found that the Server based environment had less limitations than
the Serverless environment in delivering EDR-API queries, so our next
step would be to expand the Server based environment
○ Continue to experiment with appropriate ec2 instance types
○ Adjustments with the Application Load Balancer
○ Role of Pub/Sub and Notifications (SQS, SNS, etc.)
○ Role step functions may play in breaking a large request into

separate smaller requests

Backend: Next steps in autoscaling approaches investigation

● Role of asynchronous processing and asynchronous requests.
○ Pre-signed URL’s sent back to users to access payload from an S3 bucket for responses.

● Centralized Dask Cluster Approaches
○ So far, we have investigated a Dask Local Cluster, an ECS Cluster with Fargate, and an ECS

Cluster backed by EC2 Container Instances.
○ With the EC2 Backed ECS Cluster, an autoscaling group contains a group of EC2 instances. We

have found a need to extract the scheduler instance out of this autoscaling group for the following
reasons:

■ To prevent the Scheduler instance from getting terminated when scaling down
■ To assign a separate CPU/Memory allocation to conserve costs
■ A desire to not include scheduler instance cpu/memory metrics for the Worker autoscaling

group
○ Research alternatives to ECS such as EKS (Kubernetes), Lithops, etc.

3. Exploring direct access to data in a cloud optimized manner

Kerchunk and direct access to data
● Kerchunk allows direct access to data stored in a variety of formats (NetCDF, GRIB2, GeoTIFF, etc.)

stored in CSP object storage (such as S3).

Role Kerchunk plays for EDR API
● Kerchunk has the potential to allow a consistent interface between the OGC - EDR-API and a variety of

existing data stores, such as data stored in NODD buckets.
■ Reference files created by Kerchunk can allow the EDR to read the different data stores as a

consistent data structure (as an Xarray dataset object using the Zarr engine).

Kerchunk can provide a consistent direct connection to growing data in the cloud, which
can contribute to an ecosystem that facilitates FAIR principles for data access

Early Prototype of Kerchunk with the EDR-API

● Inspiration and guidance came from this article written by Peter Marsh.
● Demonstrates remote access to HRRR data using Kerchunk and Intake-

Xarray.

https://medium.com/pangeo/accessing-netcdf-and-grib-file-collections-as-cloud-native-virtual-datasets-using-kerchunk-625a2d0a9191

Potential EDR/Kerchunk Architecture
● When the Kerchunk reference files have

been created to accompany the
underlying data (such as the HRRR GRIB
files), the data can be accessed directly
from a single intake catalogue.

● An alternative to accessing the data
through an intake catalogue is accessing
the S3 bucket and reference files directly
with fsspec.

● The EDR-API then interfaces with the
data through xarray-datatree where each
EDR collection is a single xarray dataset
object.

● We have not yet constructed our own
Kerchunk reference files, but with the
data access through the intake
catalogue, we can envision a consistent
approach to accessing different buckets
of data through the EDR-API.

Next Steps for Kerchunk and Direct Access to Data

● Connecting to HRRR data using the intake catalogue was a great first step in
demonstrating a direct connection to data in a cloud optimized manner and that the
use of this technology can be integrated with OGC API’s.

● Currently, we are only supporting the Position query for the HRRR data, but it would
be great to expand that to all of the EDR queries such as Area, Cube, Radius,
Trajectory, and Corridor.

● We are also only supporting a JSON output, but the EDR-API allows for a variety of
output formats, so we could expand this to CoverageJSON, NetCDF, GRIB, COG,
etc.

● We could create Kerchunk reference files for a specific NODD bucket of our choosing
to show the same exact data access workflow as the HRRR example.

A look ahead to Phase 2 Work

Complete Assessment/Investigation and establish best practice/guidance for implementing this
service

● Completing frontend and backend autoscaling assessment
● Complete Testing and evaluation of alternative methods for a Centralized Dask Cluster
● Continuing our research and investigation into Kerchunk and taking advantage of methods to directly

access data in a cloud optimized way.
● Defining and implementing an asynchronous approach to time consuming queries or large payload

responses
Operational Functionality Development and Testing

● Support the use of User Authentication/Authorization to backend EDR API resources
● Implement a Pub/Sub framework and approach for users to subscribe to and be notified when data is

available
● Support a message queue service (SQS)
● Implementation of Caching (Both CSP and Cloud Agnostic)

Questions?

