ARCTIC SEA ICE MONITORING FOR CLIMATE CHANGE RESEARCH

Benjamin Evans, Andrew March, Dave Whelihan, Jon Collis, Nicholas Beaird, Larry Mayer and Anthony Lyons

MOTIVATION

The Arctic climate and environment is changing rapidly and needs persistent, unattended monitoring.

Goal: a sensing network that enables understanding the impact of global climate change on the Arctic and its consequences.

Build a dataset of recorded ice events (acoustic and seismic) with concurrent measurements of the environment (i.e. water column salinity / temperature, wind speed / direction, and water column layer structure).

- Deploy sensors in a heated tent
 - 1 seismometer
 - · One in ice and one on buoy in water
 - · Identify the transfer from ice events into
 - Hydrophone
 - Record acoustics of ice events
 - High-fidelity acoustic profiler
 - 200 kHz sensor on pan / tilt mount (UNH owned)
 - Identify water column microstructures
- Temperature and salinity profiler CTD and fiber sensor (AFFOA)
- Sensors connected to laptop with staff operating

ICE CAMP QUEENFISH DATA

Sheet Breakup and Melting

Seismic (Raspberry Shake)

4 Element Hydrophone Array

CTD Casts (~15 min Intervals)

- Water mass intrusions are, unusually, anomalies in sound speed but not density Sound speed anomalies are easy to create and sustain in the Arctic
- Minimal energy required to move water masses along isodensity lines
- Atypical that sound speed can vary substantially along isodensity lines

Downward Pointing Echosounder

TECHNOLOGY HIGHLIGHT

- Multiple, discrete, individually addressed sensors distributed along thin fiber report measurements to a control unit
- MIT LL New Technology Initiative (NTI) internal funding matched by AFFOA IRAD
- **Two-track development:**
- Each approach addresses different challenges of overall technology
- MIT LL leverage temperature-sensing ASIC in parallel (multi-drop bus)
- Very small and low power sensors
- No inherent depth or spacing limitations
- No pressure / depth or salinity measurement in Phase 1
- AFFOA integrating COTS devices with I²C communications protocol
 - Temperature plus pressure and accelerometer measurements to estimate depth

PATH FORWARD

Build and test hardened, better integrated sensing node with sufficient power for extended, unattended deployment.

- Collected data on battery performance
- Determine low-power electronics lifespan in arctic conditions
- **Explore processing load** (and power draw) correlation with internal housing temperature
- **Explore energy harvesting in the Arctic environment**
- Investigate energy balance between sensing, processing and off-boarding data
- Potential use of low-power sensors to wake system during key events

¹Glowacki, O., et al. "Quantifying Iceberg Calving Fluxes with Underwater Noise," The Cryosphere, 14, 1025—1042, 2020. ²Dosser, H. V., et al, "Changes in Internal Wave-Driven Mixing Across the Arctic Ocean: Finescale Estimates from an 18-Year Pan-Arctic Record," Geophysical Research Letters, 48, c2020GL0911747.