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Today’s presentation

e Data Warehouses vs Data Lakes
o Theory
o Data Warehouse & Data Lakes in OOl and Axiom
e Motivations for moving OOl towards Data Lake pattern
o Cassandra
o Improved Data Access for all parties - humans and computers

e Explore Data Lake Concept for OOI with Low Risk- Low Cost Experiment
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Data Warehouse

A data warehouse is a blend of technologies and components which allows the strategic use of data. It is a technique for collecting and
managing data from varied sources to provide meaningful business insights.

It is electronic storage of a large amount of information by a business which is designed for query and analysis instead of transaction
processing. It is a process of transforming data into information.

e Designed for a very specific purpose, powerful but inflexible.

e Data is Persisted (Stored) in software and data appliances and accessible via standard and
custom APls

e High Structured Data Model (Strong Schema) that is Defined at Write

e Storage and Compute are Coupled

e Extract Transform Load (ETL)
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Data Lake

A Data Lake is a storage repository that can store large amount of structured, semi-structured, and unstructured data. It is a place to
store every type of data in its native format with no fixed limits on account size or file. It offers high data quantity to increase analytic
performance and native integration.

Data Lake is like a large container which is very similar to real lake and rivers. Just like in a lake you have multiple tributaries coming
in, a data lake has structured data, unstructured data, machine to machine, logs flowing through in real-time

e Data is Persisted (Stored) as Files in Various States (LO, L1, L2,...)

e Lowest common access method designed for any generic purpose and openly accessible to
software, computers and humans.

e NO Structured Data Model - Schema Defined at Read

e Storage and Compute are De-Coupled - Improving Scalability and Data Pipeline
Harmonization

e Extract LOAD Transform (ELT)
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On the Spectrum

Data Warehouse

OOl
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OOl Backend - Data Ingestion (Persistence)
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OOl Backend - Data Access
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OOl Backend - Cassandral!
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Cassandra Conundrum

Current Rutgers Build 21 Nodes

Axiom estimated 42 nodes to support the system for the next 5 years
100+ nodes at end of the OOI project

1 FTE to support - someone’s full time job keeping this thing running
Do we need to store all these engineering units is a huge data
warehouse?

e Design Flaw? Not critical but surely expensive, complex and leading
to heartburn
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Axiom Sensor Data Pipeline Bolted on to OOl
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Environmental Sensor Data Pipeline
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Firehose - DW used as cache, data persisted as files
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Apache Kafka in Data Pipelines

e Kafka is a distributed, publish-and-subscribe messaging system
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All messages in Kafka are stored on a topic

Processes that publish messages to topics are called producers

Processes that subscribe to topics and listen to messages are called consumers
Each topic has a message schema that defines the message structure
Consumer pull model; can produce/consume in batches for quick 1/0

Benefits:
[ | Easily decouple processes
° Producers/consumers don't talk directly
° Topic is generic, so can push data from anywhere
° Can scale producers or consumers independently
m  Topic log is history of events (great for debugging)
[ Can handle ridiculous number of messages

Downsides:
m  Steep learning curve, complex ecosystem, still in flux

e We use Kafka topics to link together components of our pipelines, and refresh
caches that power portal visualizations
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Status Quo

e 4 Unique Software Frameworks for Data Processing
e 4 Different API's For Data Access to Levels of Data (0-4)
e Lots of hardware, partitioned across stovepiped heterogeneous processing engines
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Experimental Design

LO/L1, L2, L3, L4 all stored as files

e 1 Software Frameworks for Data Processing
e 1 Different API's For Data Access to Levels of Data (0-4)
e Processing Engine Convergence and Data/Processing Decoupling will reduce complexity,

costs and hardware footprint
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