CGSN Dashboard
(OMS++ and ERDDAP)
Updated CGSN/EA Marine Operator Interface

Stephanie M. Petillo, PhD
Christopher Wingard, MS
What is the CGSN Dashboard?

• Next iteration on the current OMS mooring user interface
 • Used to monitor the Pioneer, Endurance, and Global Surface & Profiler moorings

• CGSN Dashboard (OMS++):
 • Improve and expand upon OMS functionality
 • Add more features to reduce the operators' status reporting and monitoring loads
 • Include Subsurface mooring, Glider/AUV, & Coastal Surface Piercing Profiler status displays (future)
Capabilities

- Automated parsing & processing of raw mooring data, including
 - Automated calibration lookup
 - Back-processing capability
- Parsed & processed data available to mooring operators for monitoring & analysis via:
 - Direct access to files via web page
 - ERDDAP
 - Plot creation and display (OMS++)
 - Calculation and display of L3 variables (OMS++)
- Configurable automated alerts & alarms and notification system
- Alert trigger, plot, & L3 variable cloning
- Support for multiple deployments of a mooring
- Uses Yaml files for simplified configuration of mooring deployments and specific asset metadata
- System overview & status pages
Capabilities (cont.)

• Access to external tools
 • Redmine
 • Roundabout Database (asset tracking system, in development)

• Links to Glider & AUV monitoring & status (in development)

• Uses up-to-date software and operating systems

• Uses open source tools to provide:
 • Visibility into data provenance
 • Ability to reproduce system

• Future: Offline laptop deployment capability for shipboard use

• Future: Status & monitoring tools for Subsurface Moorings & Surface Piercing Profilers
CGSN-PARSERS: Logs → JSON

- Python modules & shell scripts
- Parse the raw log files to create commonly formatted, human & machine readable JSON data files
- Puts raw data into a common format for further work
 - No unit conversions, no calculation of new, derived variables, no QA/QC, etc.
- Parsers exist for all Surface, Profiler, & CSPP Mooring instruments & engineering sensors
- Code publically available and hosted on BitBucket (conda-forge): (https://bitbucket.org/ooicgsn/cgsn-parsers)
CGSN-PROCESSING: JSON ➔ NetCDF

• Python modules and shell scripts
• Converts JSON formatted raw data files created via cgns-parsers into NetCDF4 datasets, served via ERDDAP
• Utilizes pre-existing ion-functions code forked to more simplified, generic code base
 • Convert values (e.g. counts to mg/L)
 • Derive new values (e.g. practical salinity, pH, OPTAA spectra)
 • https://bitbucket.org/ooicgsn/pyseas
• Utilizes dictionaries of NetCDF attributes to set common metadata for data set variables
 • Tedious to create, but one-and-done operation under version control
• Processors exist for all Surface, Profiler, & CSPP Mooring instruments & engineering sensors, except:
 • VEL3D (need to correct instrument clock)
 • Inductive: CTDBP & CTDMO (in progress), PHSEN & PCO2W (may only need to tweak non-inductive processor)
• Code publically available and hosted on BitBucket: https://bitbucket.org/ooicgsn/cgsn-processing
PYSEAS: Data Product Algorithms

• Fork of current ion-functions code used in OOI production system
 • Converted to python 3.
 • Removing CI customizations (e.g. wrapper functions), creating more generic code that can serve as python toolbox for processing data from oceanographic sensors.
 • Removed use of OS dependent code and adopted packages that are OS independent (GSW, IGRF12).
 • Removed older QA/QC code in favor of adopting IOOS QARTOD code.
• Code publically available and hosted on BitBucket:
 (https://bitbucket.org/ooicgsn/pyseas)
System Architecture Diagram
CGSN Dashboard Demo
Questions?