Regional Cabled Array (RCA)
Current Data QA/QC Activities and Priorities

Orest E. Kawka

Research Scientist, OOI Regional Cabled Array
School of Oceanography
University of Washington
Seattle, WA 98195

OOIFB and DDCI Joint Meeting, October 30, 2018
RCA: Current Data Processes

- **Instrument Data Ingestion**
 - Automatically parsed into CASSANDRA upon arrival at the servers on shore at full temporal resolution. No post-recovery ingestion needed.
 - Investigating issues with Deep Profiler data ingestion
 - Raw Data & Core Analytical Products are rsynced to OOI Raw Data Server from OMC repository at UW
 - Interruptions in ingestion process require back-filling of gaps using purge & playback from OOI Raw Data Server or Port Agent Logs

- **Instrument Port Agents and Driver/Parser Servers**
 - In OOI 2.0 RCA Team takes over responsibility
 - Six Servers moved from Pittock Bldg (Portland, OR) to 4545 Bldg, UW
 - Servers will eventually move to Shore Station in Pacific City, OR
 - Management hand off pending additional action by CI/Raytheon
 - To be developed: Interface Control Document (ICD)
RCA Data QA/QC Activities

• **Current Ongoing Priorities**
 - Continuing QA/QC work of 1.0 Rutgers Data Team
 - Working existing Redmine Tickets for ongoing data issues
 - Addressing new data issues as they are identified by internal (UW/APL engineers) and external (HelpDesk, Iris, etc.) monitoring
 - Downstream data QA/QC using field verification data and comparison of colocated instruments
 - Reviewing/updating existing and adding new data annotations
 - Data Algorithm updates as needed to resolve data issues
 - pCO$_2$ in water correction: Needs final testing and deployment
 - Exploring existing tools and scripts provided by 1.0 Rutgers Data Team
 - Asset Management Updates (*Critical Priority*)

• **OOI 2.0 Data QA/QC Plan & Procedures**
 - Updating and improving on 1.0 QA/QC procedures in coordination with OOI PMO and other MIOs
RCA Data QA/QC Activities

• **Asset Management Uploads**
 - Input into CI system of all metadata associated with OOI infrastructure (e.g. instruments) during refurbishment cycle
 - Continuing established process per MIO responsibilities prior to transition to OOI 2.0

• **New 2.0 Responsibility** – Final QC checks of all instrument associated metadata post-upload, including “Critical Metadata”
RCA Data QA/QC Activities

- “Critical Metadata”
 - Instrument Calibration Data, e.g. coefficients
 - Instrument Assignments – Deployment Sheets: What is where?

- Current High Priority: Check of historical critical metadata prior to 2.0 (2013-2018)
Comprehensive End-to-End Instrument and Data QA/QC

Quick View

Instrument Information

- Instrument Service and Testing Process
- Critical Metadata QA/QC Process
- Asset Management
- Raw Data and Data Products
- Data Product QA/QC Process

Instrument Life Cycle

- Instrument Integration Process
- Shipboard Deployment and Recovery
- Shore Initialization and Checkout

Legend:
- RCA Data Team
- RCA Engineering Team
- OOI CI
RCA Instrument and Critical Metadata QA/QC Workflow (Roles & Responsibilities)

1. Instrument in Need of Servicing
 - Prepare for Shipping
 - Create MAF
 - Enter Purchase Request
 - Log in Refurb Sheet/MAF
 - Create Service Request Form
 - Ship to Vendor
 - Prepare for Integration
 - Create cal files
 - Github
 - Deployment Assignment
 - Update Master Tracking List
 - Prepare for Integration
 - Create MAF
 - Enter Purchase Request
 - Log in Refurb Sheet/MAF
 - Vendor Service
 - Receive from Vendor
 - Inspect and Test
 - Close MAF
 - Complete Instrument Test
 - Update Refurb/MAF log
 - Integration
 - Deployment/Recovery
 - Initialization
 - Checkout First raw file
 - Verification Protocol
 - 2 sets of eyes
 - Pull Request
 - Merge to Github
 - Travis CI Check
 - Release Tag
 - Created Once a Week
 - Metadata Ingestion
 - Cyber Infrastructure Asset Management
 - Github – First Raw File
 - Github – OOI Net
 - Deployment Verification
 - Github – First Raw File
 - Github – OOI Net

Legend
- RCA Data Team
- RCA Engineering Team
- RCA Equipment Manager
- Vendor
- OOI CI
RCA Instrument Calibration Data and Assignment (ICDA)
Verification Workflow

Calibration Data
- OOI Github = RCA Google Drive = APL Refurb Tracking List
 - Yes
 - No
- Calibration Numbers Match
 - Yes
 - No
- Files Use Current Naming Convention
 - Yes
 - No

Issues Addressed and Corrections Applied By a Third Person
 - Yes
 - No

Instrument Assignment
- OOI Github = APL Assignment Sheet
 - Yes
 - No
- Instrument IDs Match
 - Yes
 - No
- Assigned Sites Match
 - Yes
 - No

Recorded on Issue Sheet

Verified by Two People

Verified
RCA 2018 Critical Metadata Entry

- **Calibration sheets:**
 - 77 sensor calibration sheets entered on GitHub
 - 663 parameters includes 6,678 floating point (FP) numbers
 - 72% of FP entries are scripted as of 2016

- **Deployment sheets:**
 - 17 deployment sheets updated on GitHub
 - 96 lines with 12 fields each
 - 1152 fields to enter and verify

- 6,678 calibration coefficients + 1152 deployment fields = 7830 potential sources for data product errors downstream….
RCA Historical (2013-2018) Verification

• **Scope of Issue:**
 - 181 individual instruments with calibrations on GitHub
 - 17 deployment sheets
 - 2013 - 2018 = 5 years of historical data-critical metadata
 7830 fields annually * 5 years = 39150 historical fields to verify

• **10/23/2018 Status**
 All deployment sheets - Checked first-pass
 Calibration data for 68 individual sensors examined
 - Missing calibration files: 46
 - Calibration coefficient errors: 13
 - Calibration coefficient resolution (Seabird): 7
 - File renaming: 32
Sources of Potential Error - Critical Metadata

- **Calibration Coefficients**
 - Example: *Mis-entry of coefficients/filenames on GitHub*
 - Solutions:
 - Scripted entry of calibration coefficients when possible
 - 2i-HITL cross-check of all coefficients on GitHub

- **Instrument Assignments**
 - Example: *Sensor mis-assigned*
 - Solutions:
 - 2i-HITL cross-check of all deployment sheets/cruise info on GitHub
 - Scripted checks of deployment assignment pre-/post-deployment
Sources of Potential Error - Additional

• **Instrument configuration**
 - Example: Incorrect configuration (FW vs. SW mode)
 - Solution:
 - Initialization scripts for each sensor that utilize a database of standardized configurations and commands (in development)

• **Instrument issues**
 - Example: Pump malfunction
 - Solution:
 - Monitor current draw to detect changes in running state of sensor

• **Cyberinfrastructure**
 - Example: Incorrect algorithm
 - Solution:
 - Compare data products with discrete samples, co-located sensors
Sources of Data Errors: Incorrect Algorithm

pCO_2 in Water, 2017 Axial Base, Shallow Profiler
Sources of Data Errors: pCO$_2$ in Water
Incorrect Vendor-Provided Algorithm

Cabled Array Profile
(Original Algorithm)
Discrete Samples
Cabled Array Profile
(Corrected Algorithm)